期刊文献+

利用二型模糊聚类进行全球海表温度数据挖掘 被引量:6

Global SST Data Mining Based on Fuzzy Clustering
原文传递
导出
摘要 基于二型模糊集的C均值聚类方法对全球时序海表温度数据进行了聚类分析,得到全球海表温度异常的典型聚类模式,并从聚类中心挖掘出潜在的海洋气候指数。 This paper implements global SST clustering analysis using C-means clustering method based on type 2 fuzzy sets,from which the typical clustering patterns of SST anomaly are discovered,and the potential ocean climate indices are discovered from the clustering patterns.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2012年第2期215-219,255-256,共5页 Geomatics and Information Science of Wuhan University
基金 国家973计划资助项目(2006CB701305)
关键词 模糊聚类 海表温度 数据挖掘 海洋气候指数 气候变化 fuzzy clustering SST data mining ocean climate indices climate change
  • 相关文献

参考文献12

  • 1李德仁,王树良,李德毅,王新洲.论空间数据挖掘和知识发现的理论与方法[J].武汉大学学报(信息科学版),2002,27(3):221-233. 被引量:237
  • 2Steinbach M, Tan Pangning, Kumar V,et al. Clustering Earth Science Data,Goals, Issues and Results [C]. KDD Workshop on Mining Scientific Datasets,San Francisco, California, USA,2001.
  • 3Steinbach M,Tan Pangning , Kumar V, et al. Discovery of Climate Indices Using Clustering[C]. The 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, 2003.
  • 4Sousa F M, Nascimento S, Casimiro H, et al. Identification of Upwelling Areas on Sea Surface Temperature Images Using Fuzzy Clustering [J].Remote Sensing of Environment, 2008, 112 ( 6 ) 2 817-2 823.
  • 5Qin Kun, Kong Lingqiao, Liu Y, et al. Sea Surface Temperature Clustering Based on Type-2 Fuzzy Theory[C]. The 18th International Conference on Geoinformatics, Beijing, 2010.
  • 6Qin Kun, Wu M R, Kong Lingqiao, et al. Spatiotemporal Data Clustering Based on Type-2 Fuzzy Sets and Cloud Models[C]. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, Hawaii, USA,2010.
  • 7Steinbach M, Tan Pangning, Kumar V, et al . Data Mining for Discovery of Ocean Climate Indices [C]. KDD Workshop on Temporal Data Mining, Edmonton, Alberta, Canada, 2002.
  • 8王新洲.论空间数据处理与空间数据挖掘[J].武汉大学学报(信息科学版),2006,31(1):1-4. 被引量:15
  • 9Hisdal E. If Then Else Statement and Interval-valued Fuzzy Sets of Higher Type[J]. International Journal of Man-Machine Studies,1981(15):285-455.
  • 10Hwang C, Rhee F C H. Uncertain Fuzzy Clustering: Interval Type-2 Fuzzy Approach to C-Means [J]. IEEE Transactions on Fuzzy Systems, 2007, 15(1) :107-120.

二级参考文献57

共引文献296

同被引文献40

  • 1于雪峰,陈守煜.模糊聚类迭代模型在洪水灾害度划分中应用[J].大连理工大学学报,2005,45(1):128-131. 被引量:14
  • 2王颖,陈松灿,张道强,杨绪兵.模糊k-平面聚类算法[J].模式识别与人工智能,2007,20(5):704-710. 被引量:5
  • 3Wang Hua, Nie Feiping, Huang Heng, et al. Non- negative Matrix Tri-Factorization Based High-Order Co-clustering and Its Fast Implementation[C]. The llth IEEE International Conference on Data Min- ing, Arlington, USA, 2011.
  • 4Wang Hua, Nie Feiping, Ding C. Simultaneous Clus tering of Multi-type Relational Data via Symmetric Nonnegative Matrix Tri-factorization[C]. The 20th ACM International Conference on Information and Knowledge Management, Glasgow, UK, 2011.
  • 5Gao Bin, Liu Tieyan, Zheng Xin, et al. Consistent Bipartite Graph Co-Partitioning for Star-Structured High-Order Heterogeneous Data Co-Clustering[C]. The 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, Chicago, USA, 2005.
  • 6Liu Tieyan, Ma Weiying. Star-Structured High-Or- der Heterogenous Data Co-Clustering Based on Con- sistent Information Theory[C]. The 6th IEEE Inter- national Conference on Data Mining, Hong Kong, China, 2006.
  • 7Gao Bin, Liu Tieyan, Qin Tao, et al. Web Image Clustering by Consistent Utilization of Visual Fea tures and Surrounding Texts[C] . The 13th Annual ACM International Conference on Multimedia, Sin- gapore, 2005.
  • 8Rege M, Dong Ming, Hua Jing. Graph Theoretical Framework for Simultaneously Integrating Visual and Textual Features for Efficient Web Image Clus- tering[C]. The 17th International Conference on World Wide Web, Beijing, China, 2008.
  • 9Greco G,Guzzo A. Co-clustering Multiple Heteroge- neous Domains: Linear Combinations and Agree- ments[J]. IEEE Transactions on Knowledge and Data Engineering, 2010,22(12) : 1 649-1 663.
  • 10Long B, Wu Xiaoyun, Zhang Zhongfei, et al. Unsu- pervised Learning on K-Partite Graphs [C]. The 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Philadel- phia,USA,2006.

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部