期刊文献+

伽马CuX(X=Cl,Br,I)的电子结构和光学性质的第一性原理计算 被引量:2

First principles calculation of electronic structures and optical properties for γ-CuX(X = Cl,Br,I)
原文传递
导出
摘要 基于第一性原理赝势平面波方法对伽马晶体CuC1,CuBr.CuI的体模量、体模量对压强的一阶偏导数、电子结构、折射率等光学性质进行了计算.计算结果表明,广义梯度近似(GGA)下CuX(X=C1,Br,I)晶体的晶格常数与体模量的计算值与实验相差较小.与局域密度近似(LDA)相比,GGA更适合于CuX(X=C1,Br,I)晶体的计算.这三者的价带都来源于Cu的3d态,导带部分主要来自Cu和卤素的s电子贡献,很少部分来自卤素的p电子贡献.计算得到CuCl,CuBr,CuI的折射率分别为1.887,2.015,2.199,与应用Gladstone-Dale半经验关系得到的结果符合得很好. We use first-principles calculation with pseudo-potential and plane wave method to study the bulk meduli,electronic structures and optical properties of copper halides CuX(X = Cl,Br,I).A comparison of the calculation results with the available experimental results show that it is more suitable using the generalized gradient approximation to study these properties than using the local density approximation.The results show that valence bands of CuX(X = Cl,Br,I) are dominated by the d bands of Cu.Conduction bands are mainly from s bands of Cu and halide atoms,as well as from p bands of halide atoms.The calculated refractive indices of CuX(X = CI, Br,I) are 1.887,2.015,and 2.199,respectively.These results are in good agreement with the those calculated from the Gladstone-Dale relationship.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2012年第3期344-349,共6页 Acta Physica Sinica
基金 国家自然科学基金(批准号:11044011,91022002) 上海市教委科研创新项目(批准号:11ZZ29) 上海市自然科学基金(批准号:11ZR1440500)资助的课题~~
关键词 电子结构 光学性质 第一性原理计算 CuX(X=Cl Br I) electronic structure optical properties first-principles calculation CuX(X = Cl Br I)
  • 相关文献

参考文献1

二级参考文献25

共引文献9

同被引文献17

  • 1Katsuhito Y, Hideaki M. Thernlal properties of dia- mond/copper composite material [J]. Microelectronics Reliability, 2004, 44(2) : 303.
  • 2刘永正,魏由洋,李卫平.金刚石/铜复合材料的热物理性能研究[A].2011中国功能材料科技与产业高层论坛论文集[C].重庆:科研出版社,2011.839.
  • 3Weidenmann K A, Tavangar R, Weber L. Rigidity of diamond reinforced metals featuring high particle con- tents [ J]. Composites Science and Technology, 2009, 69(10) : 1660.
  • 4Hanada K, Matsuzaki K, Sano T. Thermal properties of diamond particle-dispersed Cu composites [ J ]. Jour- nal of Materials Processing Technology, 2004, 153 : 514.
  • 5Monje I E, Louis E, Molina J M. Optimizing thermal conductivity in gas-pressure infiltrated aluminum/dia- mond composites by precise processing control [J]. Composites Part A, 2013, 48: 9.
  • 6Mizuuchi K, Inoue K, Agari Y, Sugioka M, Tanaka M, Takeuchi T, Kawahara M, Makino Y, Ito M. Process- ing of diamond-particle-dispersed silver-matrix compos- ites in solid-liquid co-existent state by SPS and their thermal conductivity [J]. Composites, 2012, 43 (3) : 1445.
  • 7Masaru K, Yoshimasa U, Daiki I, Takashi N. Interfa- cial structure of poly-ct-olefin laminate by using scanning thermal microscope[J]. Thermochimica Acta, 2012, 531: 1.
  • 8Weber L, Tavangar R. On the influence of active ele- ment content on the thermal conductivity and thermal exz pansion of Cu-X( X = Cr, B) diamond composites[J].Scripta Materialia, 2007, 57( 11): 988.
  • 9Hatta H, Taya M. Equivalent inclusion method for steady state heat conduction in composites [J]. Interna- tional Journal of Engineering Science, 1986, 24(7) : 1159.
  • 10Qiu W Q, Liu Z W, He L X, Zeng D C, Mai Y W. Improved interfacial adhesion between diamond film and copper substrate using a Cu (Cr) -diamond composite in- terlayer [J]. Materials Letters, 2012, 81 : 155.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部