期刊文献+

毛细管中泰勒流的流动及液相分散特性

Two-phase flow and axial liquid dispersion characteristics in single capillary Taylor flow
下载PDF
导出
摘要 在竖直毛细管中以自来水为液相,氮气为气相,气液两相在泰勒流型操作范围内并流向上流动。采用CCD照相法获得流动参数,采用脉冲示踪法通过电导探针测定浓度-时间曲线。考察了表观气、液速对气含率、液栓长度、液相平均停留时间和轴向扩散系数的影响规律。结果表明,气含率在0.4~0.85间,随表观气速的增加而增大,随表观液速的增加而减小;液栓长度的范围是5~30 mm,其变化规律则与气含率的相反;液相平均停留时间在6~11 s,随着表观气、液速的增加而减小;轴向扩散系数的范围是20~110 cm2/s,随表观气、液速的增加而增大,轴向混合加大;本文建立的彼克莱数关联式Pe=2.214Re0.2εG-0.364ψ0L.948能够预测实验值,偏差在±20%以内。 Two-phase flow and axial liquid dispersion characteristics in a single capillary have been experimentally investigated by a charge-coupled device(CCD) imaging method and conductivity probes using a pulse tracer method,respectively.Liquid mean residence time,axial dispersion coefficient and hydrodynamic parameters were measured with tap water as the liquid phase and nitrogen as the gas phase in Taylor flow.It has been demonstrated that: gas holdup within a range of 0.4-0.85 increased with increasing superficial gas velocity and decreasing superficial liquid velocity;liquid slug length varied in the opposite sense in the range 5-30 mm;the mean residence time within the range 6-11 s decreased,and the axial dispersion ranging from 20-110 cm2/s increased when increasing either gas or liquid superficial velocity.A correlation of the Peclet number Pe=2.214Re0.2ε-0.364Gψ0.948L is presented and is able to predict the experimental data within a relative deviation of ±20%.
出处 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第1期6-11,共6页 Journal of Beijing University of Chemical Technology(Natural Science Edition)
基金 国家自然科学基金面上项目(21076008)
关键词 毛细管 轴向扩散 平均停留时间 彼克莱数 capillary axial dispersion the mean residence time Peclet number
  • 相关文献

参考文献8

  • 1Bercic G, Pintar A. The role of gas bubbles and liquid slug lengths on mass transport in the taylor flow through capillaries [ J ]. Chemical Engineering Science, 1997, 52 : 3709-3719.
  • 2Heiszwolf J J, Kreutzer M T, van den Eijnden M G, et al. Gas-liquid mass transfer of aqueous taylor flow in monoliths[J]. Catalysis Today, 2001, 69: 51-55.
  • 3Nijhuis T A, Kreutzer M T, Romijn A C J, et al. Mono- lithic catalysts as more efficient three-phase reactors [ J ]. Catalysis Today, 2001, 66: 157-165.
  • 4Kreutzer M T, Bakker J J W, Kapteijn F, et al. Scaling- up muhiphase monolith reactors: linking residence time distribution and feed maldistribution [ J ]. Industrial and Engineering Chemistry Research, 2005, 44 : 4898-4913.
  • 5Thulasidas T C, Abrahams M A, Cerro R L. Dispersion during bubble-train flow in capillaries [ J ]. Chemical En- gineering Science, 1999, 54: 61-76.
  • 6Yawallkar A A, Sood R, Kreutzer M T, et al. Axial mix-ing in monolith reactors: effect of channel size [ J]. In- dustrial and Engineering Chemistry Research, 2005, 44: 2046-2057.
  • 7Worner M, Ghidersa B, Onea A. A model for the resi- dence time distribution of bubble-train flow in a square mini-channel based on direct numerical simulation results [ J]. International Journal of Heat and Fluid Flow, 2007, 28 ( 1 ) : 83-94.
  • 8Pederson H, Horvath C. Axial dispersion in a segmented gas-liquid flow[ J]. Industrial Engineering Chemical Fun- damental, 1981, 20: 181-186.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部