期刊文献+

Mean Shift跟踪的背景优化及动态分析 被引量:3

Background Optimization and Dynamic Analysis of Mean Shift Tracking
下载PDF
导出
摘要 针对传统Mean Shift跟踪算法在进行目标跟踪时背景带来的定位偏差及由于缺乏相应的跟踪状态分析策略而易陷入局部最小值的缺陷,提出了两方面的改进措施。一是将跟踪窗口内的目标和背景区分开来,对背景像素定义新的特征模型以弱化背景像素对目标模型的影响。二是将跟踪窗口进行分块处理,综合考虑每个子块相似度的大小变化建立判断准则,对跟踪状态进行动态实时分析,以判断目标是否存在遮挡:如部分遮挡,则应用没有被遮挡的子块位置偏差对目标进行定位;如完全遮挡,则采取相应的二维线性预测方案根据先验信息对目标进行定位跟踪。将该方法应用于人物跟踪中进行实验,实验结果表明,该方法有效改善了Mean Shift跟踪算法的不足,对于复杂条件下的运动目标跟踪具有很好的鲁棒性。 Considering the defects of traditional Mean Shift when used in target tracking,i.e.,the locating error caused by background and local optimum due to no corresponding status analysis strategy,two kinds of improved methods were proposed.One is to differentiate the target from the background in tracking window,and create new feature model to background pixels in order to weaken the influence of background on target model.The other is to divide the tracking window into a number of fragments.Considering comparability of each fragment entirely,the judgment rule is created to make dynamic real-time analysis to tracking status,then to judge whether there is shelter or not.If the target is sheltered partially,the location windage of fragment which is not sheltered should be used for locating.When the target is sheltered entirely,the two-dimensional linear polynomial method can be used according to the priori information.The improved method was used for human tracking in experiment,and the result indicated that the improved algorithm can overcome the defects of the traditional Mean Shift,and has fine robustness for moving target tracking under complex condition.
出处 《电光与控制》 北大核心 2012年第2期17-20,36,共5页 Electronics Optics & Control
基金 军队项目
关键词 目标跟踪 Mean SHIFT 背景优化 动态分析 target tracking Mean Shift background optimization dynamic analysis
  • 相关文献

参考文献10

二级参考文献51

共引文献60

同被引文献31

  • 1朱胜利,朱善安,李旭超.快速运动目标的Mean shift跟踪算法[J].光电工程,2006,33(5):66-70. 被引量:50
  • 2侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 3常发亮,刘雪,王华杰.基于均值漂移与卡尔曼滤波的目标跟踪算法[J].计算机工程与应用,2007,43(12):50-52. 被引量:40
  • 4王江涛,杨静宇.遮挡情况下基于Kalman均值偏移的目标跟踪[J].系统仿真学报,2007,19(18):4216-4220. 被引量:30
  • 5COMANICIU D, RAMESH V, MEER P. Kernel-based tracking [ J ]. IEEE Trans. Pattern Analysis and Machine Intelligence,2003,25 (5): 564-577.
  • 6COMANICIU D, RAMESH V, MEER P. Real-time tracking of non- rigid objects using mean shift[ C]//Proc. IEEE Conference on Com- puter Vision and Pattern Recognition. [ S. l. ]: IEEE Press, 2000: 142-149.
  • 7GUO Q C,CHANG X J,CHU H X. Mean-shift of variable window based on the epanechnikov kernel [ C ]//Proc. the International Con- ference on Mechatronics and Automation. Harbin: [ s. n. ] , 2007 : 2314-2319.
  • 8Eousetouane Fouad, Dib Lynda, Snoussi Hichem. Improved mean s]f'Mt integrating texture and color features for robust real tirle object tracking [J]. Visual fkmputer, 2013, 29 (3): 155 170.
  • 9Yinghong M, Zhi Hong M, Wenyan J, et al. Magnetic hand tracking for human-computer interface [J ]. IEEE Trans Magn, 2011..47 (5): 970-973.
  • 10Souza DFL, Machado LS, Moraes RM. Integration of tracking systems for the development of virtual reality applications [J]. IEEE Lat Am Trans, 2010, 8 (6).. 714-721.

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部