期刊文献+

光抽运石墨烯太赫兹负动态电导率的理论研究 被引量:1

Theoretical Research of Terahertz Negative Dynamic Conductivity in Optically Pumped Graphene
原文传递
导出
摘要 石墨烯特殊的零带隙能带结构和载流子弛豫特性,在研究太赫兹辐射源相干放大领域引起广泛关注。考虑带内和带间跃迁对电导率的贡献,研究了光抽运单层和多层石墨烯中非平衡二维电子-空穴系统的动态电导率特性。结果表明,在足够强的光抽运下,石墨烯中的粒子数反转能够使得动态电导率的实部在太赫兹频段内出现负值,这使基于石墨烯的太赫兹放大或受激辐射源成为可能。同时,通过研究动量弛豫时间、温度、层数、光强对石墨烯的负动态电导率的影响表明,石墨烯多层结构的动态电导率最小值的绝对值更大,作为太赫兹激光器的激活介质更具优势。 Due to the gapless energy spectrum and carriers relaxation characteristics,graphene causes a widespread concern in amplification of terahertz coherent sources.We consider the contribution of both interband and intraband transitions to the conductivity,and study the dynamic conductivity characteristics of a nonequilibium two-dimensional electron-hole system in optically pumped single and multiple graphene layer(SGL and MGL) structures.The results demonstrate that the population inversion in graphene can lead to a negative dynamic conductivity in the terahertz range of frequencies at sufficiently strong pumping,and the phenomenon might be used in graphene-based terahertz coherent sources radiation and amplification.Meanwhile,by studying the dependences of the negative conductivity on momentum relaxation time,temperature,number of layers,and optical intensity,it is found that the minimum absolute value of the real part of conductivity in MGL structures is greater than that in SGL structures.Thus,the MGL structures have more advantages to be the active medium of terahertz laser.
出处 《中国激光》 EI CAS CSCD 北大核心 2012年第1期200-206,共7页 Chinese Journal of Lasers
基金 国家自然科学基金(61001018,60637010) 山东省自然科学基金(ZR2011FM009) 山东科技大学杰出青年科学基金(2010KYJQ103) 山东省高等学校科技计划(J11LG20) 青岛市科技计划(11-2-4-4-(8)-jch,10-3-4-2-1-jch)资助课题
关键词 激光技术 太赫兹 光抽运 石墨烯 负动态电导率 laser technique terahertz optically pumped graphene negative dynamic conductivity
  • 相关文献

参考文献20

  • 1P. R. Wallace. The band theory of graphite[J]. Phys. Rev. , 1947, 71(9): 622-634.
  • 2A. K. Geim, K. S. Novoselov. The rise of graphene[J]. Nature Mater. , 2007, 6(3): 183-191.
  • 3Shengjun Yuan, Hans De Raedt, Mikhail I. Katsnelson. Electronic transport in disordered biXayer and trilayer graphene [J]. Phys. Rev. B, 2010, 82(23): 235409.
  • 4Tobias Kampfrath, Luca Perfetti, Florian Schapper et al.. Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite[J]. Phys. Rev. Lett., 2005, 95(18) : 187403.
  • 5A. H. Castro Neto, F. Guinea, N. M. R. Peres et al.. The electronic properties of graphene[J]. Rev. Mod. Phys. , 2009, 81(1): 109-162.
  • 6Oded Hod, Veronica Barone, Gustavo E. Scuseria. Half-metallic graphene nanodots: a comprehensive first principles theoretical study[J]. Phys. Rev. B, 2008, 77(3): 035411.
  • 7Zhou Haiqing, Qiu Caiyu, Liu Zheng et al.. Thickness- dependent morphologies of gold on N layer graphenes[J]. J. Am. Chem. Soc. , 2010, 132(3): 944-946.
  • 8Mao Jinhai, Zhang Haigang, Jiang Yuhang et al.. Tunability of supramolecular Kagome lattices of magnetic phthalocyanines using graphene-based moire patterns as templates[J]. J. Am. Chem. Soc., 2009, 131(40): 14136-14137.
  • 9刘江,吴思达,王科,曹镱,杨全红,王璞.基于石墨烯可饱和吸收体的被动锁模、被动调Q掺镱光纤激光器[J].中国激光,2011,38(8):8-12. 被引量:28
  • 10何京良,郝霄鹏,徐金龙,李先磊,杨英.基于石墨烯可饱和吸收被动锁模超快全固体激光器的研究[J].光学学报,2011,31(9):327-331. 被引量:21

二级参考文献37

  • 1U. Keller. Recent developments in compact ultrafast lasers[J]. Nature, 2003, 424(6950) : 831-838.
  • 2U. Keller, D. A. B. Miller, G. D. Boydetal.. Solid-state lowloss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber [ J ]. Opt. Lett. , 1992, 17(7): 505-507.
  • 3U. Keller, K. J. Weingarten, F. X. Kfirtner et al.. Semiconductor saturable absorber mirrors (SESAMt s ) for femtosecond to nanosecond pulse generation in solid-state lasers [J]. IEEE J. Sel. Top. Quantum Electron., 1996, 2(3): 435-453.
  • 4C. Honninger, G. Zhang, U. Keller et al.. Femtosecond Yb: YAG laser using semiconductor saturable absorhers [J]. Opt. Lett., 1995, 20(23): 2402-2405.
  • 5A. Garcia-Cort6s, J. M. Cano Torres, M. D. Serrano et al.. Spectroscopy and lasing of Yb-doped NaY (WO4)2: tunable and femtosecond mode-locked laser operation[J]. IEEE J. Quantum Electron., 2007, 43(9): 758-764.
  • 6H. Kataura, Y. Kumazawa, Y. Maniwa et al.. Optical properties of single-wall carbon nanotubes[J]. Synth. Met., 1999, 103(1-3): 2555-2558.
  • 7S. Yamashita, Y. Inoue, S. Maruyama et al.. Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers[J]. Opt. Lett., 2004, 29(14) : 1581--1583.
  • 8T. R. Schibli, K. Minoshima, H. Kataura et al.. Ultrashort pulse-generation by saturable absorber mirrors based on polymerembedded carbon nanotubes[J]. Opt. Express, 2005, 13 (20) : 8025-8031.
  • 9F. Wang, A. G. Rozhin, V. Scardaci et al.. Wideband- tuneable, nanotube mode-locked, fibre laser [J ]. Nature Nanotechnol., 2008, 3(12): 738-742.
  • 10K. S. Novoselov, A. K. Geim, S. V. Morozovet al.. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696) : 666-669.

共引文献39

同被引文献5

引证文献1

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部