期刊文献+

利用自发四波混频测量光子晶体光纤色散 被引量:5

Dispersion Property Measurement of Photonic Crystal Fiber by Using Spontaneous Four Wave Mixing
原文传递
导出
摘要 使用脉宽为1.6ps的脉冲光抽运0.6m长的光子晶体光纤,测量由光纤中自发四波混频过程所产生光子对的频谱,并利用所获得的相位匹配数据确定了待测光纤的色散。当抽运光的中心波长以1nm的步长,在1037~1047nm的范围内变化时,通过可调谐滤波器和单光子探测器测量光子晶体光纤产生的信号和闲频光子对的频谱,从而获得11组四波混频相位匹配数据。然后使用阶跃有效折射率模型对所获得的相位匹配数据进行拟合,得出待测光子晶体光纤的纤芯半径和包层空气比的有效值分别为0.949μm和29.52%,并在此基础上计算了光纤的色散及全频谱范围内的四波混频相位匹配曲线。实验结果显示,曲线预测值与实测值之间误差小于0.1%。 The dispersion property of a 0.6 m-long photonic crystal fiber (PCF) is deduced by characterizing its phase matching condition of spontaneous four wave mixing (SFWM) through pumping the PCF with a pulse train having a pulse duration of 1.6 ps. When the central wavelength of the pump is varied from 1037 to 1047 nm with a step of 1 nm, the spectra of signal and idler photons via SFWM are measured by using tunable filters and single- photon detectors. Using the step effective index model, and fitting the 11 sets of experimentally obtained data of SFWM phase matching, the effective core radius and air fraction of the PCF are found to be 0. 949 μm and 29.52 %, respectively. Accordingly, the dispersion property and the SFWM phase matching curve of the PCF in the whole spectral range are then calculated. Experimental results show that the predicted wavelengths of phase matching agree with the measured values, and the differences are less than 0.1%.
出处 《光学学报》 EI CAS CSCD 北大核心 2012年第1期187-191,共5页 Acta Optica Sinica
基金 国家自然科学基金(11074186) 国家973计划(2010CB923101) 教育部留学回国基金(2009D4-0003)资助课题
关键词 非线性光学 光子晶体光纤 自发四波混频 色散测量 量子光学 nonlinear optics photonic crystal fiber spontaneous four wave mixing dispersion measurement quantum optics
  • 相关文献

参考文献4

二级参考文献139

共引文献88

同被引文献67

  • 1胡永金,汪井源,文科.高双折射光子晶体光纤用于温度传感的研究[J].军事通信技术,2008,29(2):35-37. 被引量:1
  • 2杨广强,张霞,任晓敏,黄永清,陈雪.基于光子晶体光纤的全光开关实验研究[J].中国激光,2005,32(12):1650-1653. 被引量:7
  • 3方伟,马秀荣,郭宏雷,曹晔,岳洋,开桂云.光纤色散测量概述[J].光通信技术,2006,30(9):24-26. 被引量:9
  • 4吴铭,刘海荣,黄德修.高非线性光子晶体光纤非线性系数的分析[J].光通信研究,2007(5):45-46. 被引量:3
  • 5J. C. Knight. Photonic crystal fibers[J]. Nature, 2003, 424(6590): 847-851.
  • 6K. P. Hansen. Introduction to nonlinear photonic crystal fibers[J]. Fiber. Commun., 2005, 2: 226-254.
  • 7M. Lehtonen, G. Genty, H. Ludvigsen et al.. Supercontinum generation in highly birefringent microstructured fiber[J]. Appl. Phys. Lett., 2003, 82: 2197-2199.
  • 8A. Proulx, J. M. Menard, N. Ho et al.. Intensity and polarization dependences of the supercontinuum generation in birefringent and hinhly nonlinear microstructured fibers[J]. Opt. Express, 2003, 11: 3338-3345.
  • 9G. P. Agrawal. Applications of Nonlinear Fiber Optics. Second Edition[M]. Boston: Academic Press, 2008.
  • 10S. Trillo, S. Wabnitz. Parametric and raman amplification in birefringent fibers[J]. Opt. Soc. Am. B., 1992, 9(7): 1061-1082.

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部