期刊文献+

基于MIM型表面等离子体光波导的Y形分束器的传输特性研究 被引量:11

Propagation Properties of Y-Splitters Based on MIM Surface Plasmonic Waveguides
原文传递
导出
摘要 采用二维时域有限差分(FDTD)法,分析并对比了弯曲分叉部分的形状分别为正弦形和圆弧形的基于金属-绝缘体-金属(MIM)型表面等离子体光波导的Y形分束器的反射率、传输率以及能量分束比随几何结构参数的变化关系。数值计算表明,波导宽度对这两种Y形分束器传输特性的影响较为明显,两个输出分支的偏移量和弯曲分叉部分的长度对这两种Y形分束器传输特性的影响比较微弱。在600~1500nm波长范围内,弯曲分叉部分为圆弧形的Y形分束器的传输特性比弯曲分叉部分为正弦形的好。对于非对称型Y形分束器,当弯曲分叉部分为正弦形时,偏移量对反射率、传输率和能量分束比的调节作用较为明显,能量分束比最大可达到2∶1。当弯曲分叉部分为圆弧形时,偏移量对反射率、传输率和能量分束比的调节作用较为微弱。 Using the two-dimesional finite-difference time-domain (FDTD) method, the dependence of the reflectivity, the transmission rate and the energy splitting ratio, on the geometrical parameters of two kinds of Y- splitter with sine shaped arc and circular shaped arc, based on mental-insulator-mental (MIM) surface plasmonic waveguides, are analysed. Results show that the transmission characteristics of the two Y-splitters depend obviously on the parameter of the width of the waveguides and weakly on the two parameters of the offsets of the two output branches and the lengths of the curves. The transmission characteristics of the Y-splitter whose curves are circular arc-shaped are better than the Y-splitter whose curves are sine arc-shaped within 600~ 1500 nm. For asymmetrical Y- splitter, the reflectivity, the transmission rate and the power splitting ratio are affected obviously by the parameter of offset when the curves are sine arc-shaped and the energy splitting ratio can be up to 2:1. The reflectivity, the transmission rate and the power splitting ratio are affected faintly by the parameter of offset when the curves are circular arc-shaped.
出处 《光学学报》 EI CAS CSCD 北大核心 2012年第1期246-253,共8页 Acta Optica Sinica
基金 国家基础科学人才培养基金(J0730317) 山西省自然科学基金(2010011003-1) 量子光学与光量子器件国家实验室开放课题(KF201006)资助课题
关键词 集成光学 光波导 表面等离子体光波导 Y型分束器 integrated optics optical waveguides surface plasmonic waveguides Y-splitter
  • 相关文献

参考文献28

  • 1W. L. Barnes, A. Dereux, T. W. Ebbesen et al.. Surface plasmon subwavelength optics [J]. Nature, 2003, 424 (6905) : 824-830.
  • 2E. Ozbay. Plasmonics: merging photonics and electronics at nanoscale dimensions[J]. Science, 2006, 311(5758) : 189-193.
  • 3S. I. Bozhevolnyi, V. S. Volkov, E. Devaux et al.. Channel plasmon subwavelength waveguide components including interferometers and ring resonators [ J ]. Nature, 2006, 440(7083) : 508-511.
  • 4S. A. Maier. Plasmonics: The promise of highly integrated optical devices[J]. IEEE J. Sel. Topics Quant. Electron., 2006, 12(6): 1671-1677.
  • 5秦小娟,郭亚楠,薛文瑞.双正方形中空表面等离子体光波导的传输特性研究[J].光学学报,2010,30(12):3537-3541. 被引量:9
  • 6R. Zia, M. D. Selker, P. B. Catrysse et al.. Geometries and materials for subwavelength surface plasmon modes[J]. J. Opt. Soc. Am. A, 2004, 21(12): 2442-2446.
  • 7S. E. Kocabas, G. Veronis, D. A. B. Miller et al.. Modal analysis and coupling in metal-insulator-metal waveguides[J]. Phys. Rev. B, 2009, 79(3): 035120.
  • 8J. A. Dionne, L. A. Sweatlock, H. A. Atwater. Plasmon slot waveguides: Towards chip scale propagation with subwavelength- scale localization[J]. Phys. Rev. B, 2006, 73(3) : 035407.
  • 9G. Veronis, S. Fan. Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides[J]. Appl. Phys. Lett. , 2005, 87(13): 131102.
  • 10Z. Han, S. He. Multimode interference effect in plasmonic subwavelength waveguides and an ultra-compact power splitter [J]. Opt . Commun., 2007, 278(1): 199-203.

二级参考文献34

  • 1孙一翎,江晓清,王明华.多模干涉耦合器一般成像位置分析[J].光学学报,2004,24(6):759-762. 被引量:10
  • 2曾捷,梁大开,曹振新.光纤表面等离子体波共振温度传感器的研究[J].中国激光,2004,31(7):838-842. 被引量:13
  • 3汪国平.表面等离子体激元纳米集成光子器件[J].物理,2006,35(6):502-507. 被引量:10
  • 4W.L.Barnes,A.Dereux,T.W.Ebbesen.Surface plasmon subwavelength optics[J].Nature,2003,424(6950):824-830.
  • 5E.Ozbay.Plasmonics:merging photonics and electronics at nanoscale dimensions[J].Science,2006,311(5758):189-193.
  • 6S.I.Bozhevolnyi,V.S.Volkov,E.Devaux et al..Channel plasmon subwavelength waveguide components including interferometers and ring resonators[J].Nature,2006,440(7083):508-511.
  • 7S.A.Maier.Plasmonics:the promise of highly integrated optical devices[J].IEEE J.Sel.Topics Quant.Electron.,2006,12(6):1671-1677.
  • 8Wenrui Xue,Yanan Guo,Peng Li et al..Propagation properties of a surface plasmonic waveguide with double elliptical air cores[J].Opt.Express,2008,16(14):10710-10720.
  • 9Z.Zhu,T.G.Brown.Full-vectorial finite-difference analysis of microstructured optical fibers[J].Opt.Express,2002,10(17):853-864.
  • 10S.Guo,F.Wu,S.Albin.Loss and dispersion analysis of microstructured optical fibers by finite-difference method[J].Opt.Express,2004,12(15):3341-3352.

共引文献20

同被引文献119

  • 1李艳宁,唐洁,胡小唐,张国雄.脉冲激光微加工技术在MEMS中的应用[J].压电与声光,2005,27(2):185-189. 被引量:4
  • 2赵华伟,黄旭光,苏辉.基于表面等等离波子的新型Y分支波导[J].光学学报,2007,27(9):1649-1652. 被引量:9
  • 3H. A. Bethe. Theory of diffraction by small holes[J].Phys. Rev., 1944, 66(7): 163-182.
  • 4T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi et al.. Extraordinary optical transmission through subwavelength hole arrays[J].Nature, 1998, 391(6668): 667-669.
  • 5Y. Takakura. Optical resonance in a narrow slit in a thick metallic screen[J].Phys. Rev. Lett., 2001, 86(24): 5601-5603.
  • 6L. M. Moreno, F. J. Garcia-Vida. Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations[J].Phys. Rev. Lett., 2003, 90(16): 167401.
  • 7F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen et al.. Multiple paths to enhance optical transmission through a single subwavelength slit[J].Phys. Rev. Lett., 2003, 90(21): 213901.
  • 8S. I. Bozhevolnyi. Plasmonic Nanoguides and Circuits[M].Singapore: Pan Stanford Publishing, 2008. 7.
  • 9B. Wang, G. P. Wang. Metal heterowaveguides for nanometric focusing of light[J].Appl. Phys. Lett., 2004, 85(16): 3599-3601.
  • 10B. Wang, G. P. Wang. Planar metal heterostructures for nanoplasmonic waveguide[J].Appl. Phys. Lett., 2007, 90(1): 013114.

引证文献11

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部