期刊文献+

基于2点RANSAC的无人直升机单目视觉SLAM 被引量:3

Monocular Visual SLAM of Unmanned Helicopter Based on 2-point RANSAC
下载PDF
导出
摘要 1随机抽样一致性(RANSAC)算法是一种准确度高、计算量小的数据关联算法,但是其在摄像机多个轴上的角速度都快速变化时会失效,用在无人直升机为载体的单目视觉同步定位与地图构建(SLAM)上存在滤波发散的风险.针对该问题.提出2点RANSAC算法,结合EKF运动模型的先验信息,用只抽样2个匹配点的RANSAC去除野点在微小型无人直升机平台上进行了基于2点RANSAC算法的单目视觉SLAM实验,实验结果表明2点RANSAC算法工作可靠,SLAM的位姿估计精度可以达到自主飞行需要. The 1-point random sample consensus(RANSAC) algorithm is a data association algorithm with high accuracy and low compaction cost.However,it fails when angular velocities around multiple axes of the camera change quickly,and causes the risk of filter divergence when applied to the monocular visual simultaneous localization and mapping(SLAM) of unmanned helicopter.For this problem,2-point RANSAC algorithm is proposed,which incorporates a priori information from the EKF(extended Kalman filter) motion model,and uses RANSAC,in which only 2 matched points are used for sampling,to remove the outliers.Monocular visual SLAM based on 2-point RANSAC algorithm is performed on a mini unmanned helicopter(MUH) platform.The field-experiment results show that 2-point RANSAC algorithm works reliably, and the SLAM's pose estimation is precise enough for autonomous flight.
出处 《机器人》 EI CSCD 北大核心 2012年第1期65-71,共7页 Robot
基金 国家973计划资助项目(2009CB320603)
关键词 无人直升机 单目视觉 同步定位与地图构建 数据关联 2点随机抽样一致性 unmanned helicopter monocular vision simultaneous localization and mapping(SLAM) data association 2-point random sample consensus(RANSAC)
  • 相关文献

参考文献24

  • 1Shakemia O, Vidal R, Sharp C S, et al. Multiple view motion estimation and control for landing an unmanned aerial vehicle[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2002: 2793-2798.
  • 2Sharp C S, Shakemia O, Sastry S S. A vision system for landing an unmanned aerial vehicle[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2001: 1720-1727.
  • 3Sasa S, Gobi H, Nonomiya T, et al. Position and attitude estimation using image proceeding of runway[C]//Proceedings of 38th Aerospace Sciences Meeting and Exhibition. Reston, VA, USA: AIAA, 2000: 1-10.
  • 4Miller A, Shah M, Harper D. Landing a UAV on a runway using image registration[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2008: 182-187.
  • 5Martinez C, Mondragon I F, Olivares-Mendez M A, et al. Onboard and ground visual pose estimation techniques for UAV control[J]. Journal of Intelligent and Robotic Systems, 2011, 61(1-4): 301-320.
  • 6任沁源,李平,韩波.基于视觉信息的微型无人直升机位姿估计[J].浙江大学学报(工学版),2009,43(1):18-22. 被引量:13
  • 7Kim J, Sukkarieh S. Real-time implementation of airborne inertial-SLAM[J]. Robotics and Autonomous Systems, 2007, 55(1): 62-71.
  • 8Aouf N, Sazdovski V, Tsourdos A, et al. Low altitude airborne SLAM with INS aided vision system[C]//Proceedings of AIAA Guidance, Navigation and Control Conference. Reston, VA, USA: AIAA, 2007.
  • 9Stinderhauf N, Lange S, Protzel P. Using the unscented Kalman filter in mono-SLAM with inverse depth parameterization for autonomous airship control[C]//IEEE International Workshop on Safety, Security and Rescue Robotics. Piscataway, NJ, USA: IEEE, 2007: 1-6.
  • 10Colombatti G, Aboudan A, La Gloria N, et al. Lighter-than-air UAV with SLAM capabilities for mapping applications and at- mosphere analyses[J]. Memorie della Societa Astronomica Italiana Supplement, 2011, 16: 42-49.

二级参考文献15

  • 1徐玉,李平,韩波.一种面向机动的低成本姿态测量系统[J].传感技术学报,2007,20(10):2272-2275. 被引量:20
  • 2祝海江,吴福朝,胡占义.一种基于视觉的飞行器接近角估计方法[J].软件学报,2006,17(5):959-967. 被引量:4
  • 3李晓明,郑链,胡占义.基于SIFT特征的遥感影像自动配准[J].遥感学报,2006,10(6):885-892. 被引量:154
  • 4SHAKERNIA O,VIDAL R, SHARP C,et al. Multiple view motion estimation and control for landing an aerial vechicle[C] // International Conference on Robotics and Automation.[S.l.]: Robot, 2002 : 2793 - 2798.
  • 5MUKUNDAN R, NARAYANAN R V, PHLIP N K. A vision based attitude and position estimation algorithm for rendezeous and docking[J]. Journal of Spacecraft Technology, 1994, 4(2) :60 - 66.
  • 6SATO M, AGGARWAL J K. Estimation of position and orientation from image sequence of a circle[C]//International Conference on Robotics and Automation. [S. l.]: Robot, 1997:2252-2257.
  • 7WERNER S, FURST S, DICKMANUS D. Vision- based multi sensor machine perception system for autonomous aircraft landing approach [C]// Proceeding of the SHE 1996. Orlando, F.L, USA:SPIE,1996:54-63.
  • 8PETRUSZK A A, STENTZ A. Stereo vision automatic landing of VTOL UAVs[C]//Proceedings of Association for Unmanned Vehicle System International. Portugal:[s, n.],1996:245 -263.
  • 9FERNANDO C. Improving vision based planar motion estimation for unmanned aerial vehicles through online mosaicing [C]//International Conference on Robotics and Automation. [S.l.]: Robot, 2006 : 2860 - 2865.
  • 10HARTLEY R I, ZISSERMAN A. Multiple view geometry in computer vision [M]. Cambridge: Cambridge University Press, 2004.

共引文献12

同被引文献23

  • 1P San Segundo, D Rodriguez-Losada. Robust global feature based data association with a sparse bit optimized maximum clique algo- rithm[ J]. Robotics, IEEE Transactions on, 2013,29 (5) : 1332- 1339.
  • 2N Snavely, S M Seitz, R Szeliski. Skeletal graphs for efficient structure from motion[ C]. proceedings of the 26th 1EEE Confer- ence on Computer Vision and Pattern Recognition, CVPR, An- chorage, AK, F, 2008.
  • 3D Simon. Optimal state estimation: Kalman, H infinity, and non- linear approaches [ M ]. John Wiley & Sons, 2006.
  • 4HSamet,周立柱.多维与度量数据结构基础[M],北京:清华大学出版社,2011.
  • 5J Neira, J D Tard6s. Data association in stochastic mapping using the joint compatibility test[ J]. IEEE Transactions on Robotics and Automation, 2001,17 (6) : 890-897.
  • 6Strasdat H,Montiel J M M,Davison A J.Visual SLAM:why filter?[J].Image and Vision Computing,2012,30(2):65-77.
  • 7Pire T,Fischer T,Civera J,et al.Stereo parallel tracking and mapping for robot localization[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems.2015:1373-1378.
  • 8Concha A,Drews-Jr P,Campos M,et al.Real-time localization and dense mapping in underwater environments from a monocular sequence[C]//OCEANS 2015-Genova.IEEE,2015:1-5.
  • 9Salas-Moreno R,Newcombe R,Strasdat H,et al.Slam++:Simultaneous localisation and mapping at the level of objects[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2013:1352-1359.
  • 10Civera J,Grasa O G,Davison A J,et al.1-point RANSAC for EKF-based structure from motion[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems.2009:3498-3504.

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部