期刊文献+

基于最小二乘与自适应免疫遗传算法的小型无人直升机系统辨识 被引量:10

Identification of Small-scale Unmanned Helicopter Based on Least Squares and Adaptive Immune Genetic Algorithm
下载PDF
导出
摘要 针对小型无人直升机小稳定、强耦合、非线性的特点,建立了小型无人直升机悬停状态下行动力学模型.设计了一种基于最小乘与自适应免疫遗传算法(LS-AIGA)的辨识算法,根据辨识实验的需要研制了机载微小型导航、制导与控制系统(MGNC).利用飞行实验数据,根据本文的辨识算法,对所建立模型中未知参数进行了辨识.最后对得到的模型进行了验证与分析,结果表明模型辨识数据与真实飞行实验数据匹配较好,所建立模型能够反映小型无人直升机动力学特性. Aiming at the instability,strong coupling and nonlinearity of small-scale helicopter(SUH),a flight dynamics model of SUH under hovering state is established.Then an identification algorithm is designed based on least squares and adaptive immune genetic algorithm(LS-AIGA),and an airborne micro navigation,guidance and control system(MGNC) is developed for the needs of identification experiment.Then unknown parameters of the model are identified using flight test data according to the proposed identification algorithm.Finally,the established model is validated and analyzed,and the results show that the model identification data and the actual flight test data match well,and the established model can reflect the dynamics characteristics of the SUH.
出处 《机器人》 EI CSCD 北大核心 2012年第1期72-77,共6页 Robot
基金 国家杰出青年科学基金资助项目(60825305) 国家自然科学基金资助重点项目(60736025) 国家自然科学基金资助项目(60905056)
关键词 无人直升机 飞行动力学模型 系统辨识 最小二乘 自适应免疫遗传算法 unmanned helicopter flight dynamics model system identification least squares adaptive immune genetic algorithm
  • 相关文献

参考文献4

二级参考文献33

  • 1Mettler B. Modeling small-scale unmanned rotorcraft for advanced flight control design[D]. Pittsburgh, USA: Carnegie Mellon University, 2001.
  • 2Kim S K. Modeling, identification, and trajectory planning for a model-scale helicopter[D]. Michigan, USA: The University of Michigan, 2001.
  • 3Smith C B, Wereley N M. Damping identification in helicopter rotor system[C]//Annual Forum Proceedings of the American Helicopter Society. Alexandria, VA, USA: AHS, 1998: 391- 407.
  • 4Akramizadeh A, Farjami A A, Khaloozadeh H. Nonlinear Hammerstein model identification using genetic algorithm[C]//IEEE International Conference on Artificial Intelligence Systems. Piscataway, NJ, USA: IEEE, 2002: 351-356.
  • 5Liu C L, Liu J Z, Niu Yu G, et al. The application of genetic algorithm in model identification[C]//IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering. Piscataway, NJ, USA: IEEE, 2002: 1261-1264.
  • 6Zhao Z G, Lu T S. GA-based evolutionary identification of model structure for small-scale robot helicopter systems[C]//7th International Workshop on Embedded Systems - Modeling, Technology and Applications. Dordrecht, Netherlands: Springer, 2006: 149-158.
  • 7Iwasaki M, Miwa M, Matsui N. GA-based evolutionary identification algorithm for unknown structured mechatronic systems[J]. IEEE Transactions on Industrial Electronics, 2005, 52(1): 300-305.
  • 8Inoue K, Gan C, Shibata H. Identification of continuous-time systems via genetic algorithm[C]//41st Annual Conference of the Society-of-Instrument-and-Control-Engineers. Piscataway, NJ, USA: IEEE, 2002: 1989-1993.
  • 9Morris J C, van Nieuwstadt M, Bendotti E Identification and control of a model helicopter in hover[C]//Proceedings of the American Control Conference. Piscataway, NJ, USA: IEEE, 1994: 1238-1241.
  • 10蔡金师.飞行器系统辨识学[M].北京:国防工业出版社,2003.

共引文献25

同被引文献52

引证文献10

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部