摘要
设随机矩阵U属于n阶实正交群O(n),O(n)的分布是单位Haar分布,[U]m表示U的m阶顺序主子矩阵,记Q=n/m~(1/n/m)[U]m.文献(Diaconis P,Shahshahani M.J Appl Probab,1994,A31:49-62.)通过计算TrUj的联合矩得出对固定的整数k,当n充分大时(TrU,TrU2,…,TrUk)渐进于正态分布.利用Jack函数和对称群的特征标的恒等式,推广这一结论到U的子矩阵情形,即证明了随机向量(TrQ,TrQ2,…,TrQk)当m→+∞时依分布收敛于正态分布.对特殊实正交矩阵群SO(n)也有类似的结论.
Let O(n) stand for the group of real orthogonal matrices of size n×n equipped with the unit Haar measure.Let random matrix U∈O(n),[U]m be the top left m×m block of U and Q=Q=n/m~(1/n/m)[U]m.By computing the joint moments of TrUj,P.Diaconis and M.Shahshahani obtained that for any positive integer k,(TrU,TrU2,…,TrUk) is asymptotically normally distributed for enough large n.In this paper,by using Jack functions and identity of characters of symmetric group,we prove that the random vector(TrQ,TrQ2,…,TrQk) converges weakly to normal distribution when m→+∞.Similar result holds true for the special real orthogonal matrices group SO(n).
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2012年第1期49-52,共4页
Journal of Sichuan Normal University(Natural Science)
基金
四川省教育厅自然科学重点基金(11ZA156)资助项目
关键词
随机矩阵
实正交群
矩
正态分布
特征标
random matrix
real orthogonal group
moment
normal distribution
character