期刊文献+

实正交矩阵的子矩阵的幂的迹的渐进分布

Asymptotic Distributions of Traces of Powers of the Submatrices of Real Orthogonal Matrices
下载PDF
导出
摘要 设随机矩阵U属于n阶实正交群O(n),O(n)的分布是单位Haar分布,[U]m表示U的m阶顺序主子矩阵,记Q=n/m~(1/n/m)[U]m.文献(Diaconis P,Shahshahani M.J Appl Probab,1994,A31:49-62.)通过计算TrUj的联合矩得出对固定的整数k,当n充分大时(TrU,TrU2,…,TrUk)渐进于正态分布.利用Jack函数和对称群的特征标的恒等式,推广这一结论到U的子矩阵情形,即证明了随机向量(TrQ,TrQ2,…,TrQk)当m→+∞时依分布收敛于正态分布.对特殊实正交矩阵群SO(n)也有类似的结论. Let O(n) stand for the group of real orthogonal matrices of size n×n equipped with the unit Haar measure.Let random matrix U∈O(n),[U]m be the top left m×m block of U and Q=Q=n/m~(1/n/m)[U]m.By computing the joint moments of TrUj,P.Diaconis and M.Shahshahani obtained that for any positive integer k,(TrU,TrU2,…,TrUk) is asymptotically normally distributed for enough large n.In this paper,by using Jack functions and identity of characters of symmetric group,we prove that the random vector(TrQ,TrQ2,…,TrQk) converges weakly to normal distribution when m→+∞.Similar result holds true for the special real orthogonal matrices group SO(n).
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第1期49-52,共4页 Journal of Sichuan Normal University(Natural Science)
基金 四川省教育厅自然科学重点基金(11ZA156)资助项目
关键词 随机矩阵 实正交群 正态分布 特征标 random matrix real orthogonal group moment normal distribution character
  • 相关文献

参考文献16

  • 1Diaconis P, Shahshahani M. On the eigenvalues of random matrices[J]. J Appl Probab,1994,A31:49-62.
  • 2Diaconis P. Patterns in eigenvalues: The 70th Josiah Willard Gibbs lecture[J]. Bull Am Math Soc,2003,40(2):155-178.
  • 3Hughes C P, Radnick Z. Mock Gaussian behaviour for linear statistics of classical compact groups[J]. J Phys,2003,A36:2919-2932.
  • 4Pastur L, Vasilchuk V. On the moments of traces of matrices of classical Groups[J]. Commun Math Phys,2004,252:149-166.
  • 5Stolz M. On the Diaconis-Shahshahani method in random matrix theory[J]. J Algebraic Combinatories,2005,22(4):471-191.
  • 6Dehaye P O. Averages over classical compact Lie groups, twisted by characters[J]. J Combinatorial Theory,2007,A114(7):1278-1292.
  • 7冯志明.典型群的迹的矩[J].乐山师范学院学报,2008,23(5):12-13. 被引量:2
  • 8Collins B, Stolz M. Borel theorems for random matrices from the classical compact symmetric spaces[J]. Ann Probab,2008,36(3):876-895.
  • 9Novak J. Truncations of random unitary matrices and Young tableaux[J]. Electronic J Combinatorics,2007,14:1-21.
  • 10Jiang T F. How many entries of a typical orthogonal matrix can be approximated by independent normals[J]. Ann Probab,2006,34(4):1497-1529.

二级参考文献2

  • 1Michael Stolz. On the Diaconis-Shahshahani Method in Random Matrix Theory[J] 2005,Journal of Algebraic Combinatorics(4):471~491
  • 2L. Pastur,V. Vasilchuk. On the Moments of Traces of Matrices of Classical Groups[J] 2004,Communications in Mathematical Physics(1-3):149~166

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部