期刊文献+

一类具有非线性死亡率的时滞Nicholson飞蝇方程的持久性 被引量:2

Permanence for a Delayed Nicholson's Blowflies Model with a Nonlinear Density-dependent Mortality Term
下载PDF
导出
摘要 研究了一类具有非线性死亡率的广义时滞Nicholson飞蝇方程.在容许初值的条件下,利用解的延拓定理,首先证明了该方程的所有解是正的并且是整体存在的,然后利用微分不等式的技巧,证明了该方程所有解具有正的上下确界,获得了该方程所有解具有持久性的充分条件.由于所考虑的模型比同类文献中的模型更加广泛,从而改进和推广了已有文献中的相关结果,并给出了一个具体的例子. In this paper,we study a generalized Nicholson's blowflies model with a nonlinear density-dependent mortality term.Under the admissible initial conditions,by using continuous dependence theorem,some criteria to guarantee the positivity and global existence of solutions are obtained.Then,by applying differential inequality techniques,we give the positive lower bound and upper bound of solutions,and get the permanence of this model.Moreover,we present an example to illustrate our main results.
作者 黄祖达
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第1期86-89,共4页 Journal of Sichuan Normal University(Natural Science)
基金 湖南省自然科学基金(11JJ6006) 湖南省教育厅自然科学基金(10C1009 11C0916和11C0915)资助项目
关键词 变时滞 持久性 Nicholson飞蝇方程 time-varying delays permanence Nicholson's blowflies model
  • 相关文献

参考文献15

  • 1Nicholson A J. An outline of the dynamics of animal populations[J]. Aust J Zool,1954,2:9-65.
  • 2Gurney W S, Blythe S P, Nisbet R M. Nicholson’s blowflies[J]. Nature,1980,287:17-21.
  • 3Kocic V L, Ladas G. Oscillation and global attractivity in the discrete model of Nicholson’s blowflies[J]. Appl Anal,1990,38:21-31.
  • 4Lenbury Y, Giang D V. Nonlinear delay differential equations involving population growth[J]. Math Comput Model,2004,40:583-590.
  • 5Liu B. Global stability of a class of Nicholson’s blowflies model with patch structure and multiple time-varying delays[J]. Nonlinear Anal:Real World Applications,2010,11(4):2557-2562.
  • 6Liu B. Permanence for a delayed Nicholson’s blowflies model with a nonlinear density-dependent mortality term[J]. Annales Polonici Mathematici,2011,101:123-129.
  • 7Liz E, Rst G. Dichotomy results for delay differential equations with negative Schwarzian derivative[J]. Nonlinear Anal:Real World Applications,2010,11(3):1422-1430.
  • 8Berezansky L, Braverman E, Idels L. Nicholson’s blowflies differential equations revisited:main results and open problems[J]. Appl Math Modelling,2010,34:1405-1417.
  • 9Smith H L. Monotone Dynamical Systems[M]. Providence RI:Math Surveys Monogr,1995.
  • 10Hale J K, Verduyn Lunel S M. Introduction to Functional Differential Equations[M]. New York:Springer-Verlag,1993.

同被引文献18

  • 1王晓,李志祥.含扩散项的多时滞Nicholson苍蝇模型的振动性[J].高校应用数学学报(A辑),2005,20(3):265-274. 被引量:1
  • 2罗交晚,刘开宇.广义Nicholson苍蝇模型的全局吸引性[J].湖南大学学报(自然科学版),1996,23(4):13-17. 被引量:5
  • 3KULENOVIC M R S,LADAS G,SFICAS Y G. Global attractivity in Nicholson's blowflies [J]. A ppl Anal, 1992,43 (1/2) : 109-124.
  • 4SO J W ,YU J S, Global attractivity and uniform persistence in Nicholson's blowflies[J]. Diff Eqns Dynam Syst, 1994, 2(1):11-18.
  • 5LI Wan-tong,FAN Yong-hong. Existence and global attractivity of positive periodic solutions for the impulsive delay Nicholson's blowflies model[J]. J Comput Appl Math, 2007,201 (1) : 55-68.
  • 6KULENOVIC M R S, LADAS G. Linearized oscillations in population dynamics [J ]. Bull Math Biol, 1987,49 (5) : 615- 627.
  • 7GYORI I,TROFIMCHUK S. On the existence of rapidly oscillatory solutions in the Nicholson blowflies equation[J]. Nonlinear Anal, 2002,48 (7) : 1033-1042.
  • 8SAKER S,AGARWAL S. Oscillation and global attractivity in a periodic Nicholson's blowflies model[J]. Math Corn- put Model, 2002,35 (7/8) : 719-731.
  • 9LIU Bing-wen. Global stability of a class of Nieholson's blowflies model with patch structure and multiple time varying delays[J]. Nonlinear Analysis :Real World Applications, 2010,11 (4) : 2557-2562.
  • 10LI Jing-wen,DU Chao-xiong. Existence of positive periodic solutions for a generalized Nieholson's blowflies model [J]. J Comput Appl Math, 2008,221 (1) : 226-233.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部