期刊文献+

扭转弯曲定理和它的一个应用 被引量:1

The Twist-bend Theorem With an Application
原文传递
导出
摘要 本文对解析映射证明了一个不动点定理(称为扭转弯曲定理),其中弯曲条件取代了经典扭转定理(参考Ding W.Y.,A generalization of the Poincare-Birkhoff theorem,Proc.Amer.Soc.,1983,88:341-346)中的保面积条件;然后用本文的扭转弯曲定理证明了一类耗散的Duffing方程拥有高阶的次调和解. In this paper,a fixed-point theorem(called twist-bent theorem) is proved for analytic maps,where the bend condition replaces the area-preserving condition in the classic twist theorem(see the Reference(Ding W.Y.,A generalization of the Poincare-Birkhoff theorem, Proc.Amer.Soc,1983,88:341-346)).Then the twist-bend theorem is applied to proving the existence of subharmonic solutions of certain dissipative Duffing equation containing small parameters.
作者 丁同仁
出处 《数学进展》 CSCD 北大核心 2012年第1期31-44,共14页 Advances in Mathematics(China)
关键词 解析映射 扭转弯曲定理 耗散Duffing方程 次调和解 analytic map twist-bend theorem dissipative Duffing equation subharmonic solution
  • 相关文献

参考文献10

  • 1Coddington, E.A. and Levinson, N., Theory of Ordinary Differential Equations, New York: McGraw-Hill, 1955.
  • 2Lefschetz, S., Differential Equations: Geometrical Theory, New York: Interscience Publishers, 1957.
  • 3Ding T.R., Approaches to the Qualitative Theory of Ordinary Differential Equations: Dynamical Systems and Nonlinear Oscillations, Peking University Series in Mathematics, 3, World Scientific, 2007.
  • 4Ding T.R. and Zanolin, F., Periodic solutions of Duffing's equations with super-quadratic potential, J. Diff. Eqs., 1992, 97: 326-378.
  • 5Ding W.Y., Fixed-points of twist mapping and periodic solutions of ordinary differential equation, Acta Math. Sinica, 1982, 25: 227-235.
  • 6Ding W.Y., A generalization of the Poincar-Birkhoff theorem, Proc. Amer. Soc., 1983, 88: 341-346.
  • 7Hale, J.K. and Taboas, P.Z., Interaction of damping and forcing in a second order equation, Nonlinear Analysis:T.M.A., 1978, 2: 71-84.
  • 8Henrard, M. and Zanolin, F., Bifurcation from a periodic orbit in perturbed planar Hamiltonian systems, J. Math. Anal. Appl., 2003, 277: 79-103.
  • 9Loud, W.S., Periodic solutions of x+cx+g(x) = ef(t), Mere. Amer. Math. Soc., 1959, 31: 1-58.
  • 10Ueda, Y., Strange Attractors and the Origin of Chaos, first presented at the International Symposium "The Impact of Chaos on Science and Society" held in Tykyo between 15-17 April, 1991, Tokyo: United Nations Univ. Press. 1997.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部