摘要
本文指出极小连通二部分数1-因子不一定是极小2-连通图.研究了σ_2(G)与分数k-因子存在性之间的关系,指出存在一个特例在满足阶数n≥4k-5,δ(G)≥k且σ_2(G)≥n条件下,图G不存在分数k-因子.
A connected bipartite fractional 1-factor with the minimum number of edges may not be a minimally 2-connected graph.The connection betweenσ_2(G) and the existence of fractional k-factor is investigated.This paper also constructs a graph satisfying n4k -5, S(G)≥k andVσ(G)≥n,but having no fractional k-factor.
出处
《数学进展》
CSCD
北大核心
2012年第1期45-49,共5页
Advances in Mathematics(China)
基金
国家自然科学基金资助课题(No.60903131)
关键词
连通分数1-因子
极小2-连通图
分数k-因子
connected fractional 1-factor
minimally 2-connected graph
fractional k-factor