期刊文献+

单位圆到凸区域上的调和拟共形映照 被引量:2

Harmonic Quasiconformal Mappings of the Unit Disk Onto Convex Domains
原文传递
导出
摘要 设F(x)=p(x)e^(ir(x))为单位圆周到约当凸曲线Γ上的保向同胚映照.本文证明:若ess inf|F'(x)|>0且对于一切的φ∈R有|F(φ+x)+F(φ-x)-2F(φ)|≤M|x|~α,这里α>1,M为正常数,则ω=P[F](z)为单位圆到凸区域Ω=int(Γ)上为调和拟共形映照. Let F(x) = f(e^(ix)) =ρ(x)e^(iγ(x)) be an orientation preserving homeomorphism ofthe unit circle onto the convex Jordan curveΓ.In this paper,we prove that if essinf |F′(x)|0,and |F(φ+ x) + F(φ-x)-2F(φ)|≤M|x|~α for every x,φ∈R,whereα1 and M is a positiveconstant,then w = P[F](z) is a harmonic quasiconformal mapping of unit disk ontoΩ= int(Γ).
作者 朱剑峰
出处 《数学进展》 CSCD 北大核心 2012年第1期50-54,共5页 Advances in Mathematics(China)
基金 华侨大学侨办基金项目(No 10QZR22) 国家自然科学基金(No.11101165)
关键词 调和映照 拟共形映照 调和拟共形映照 quasiconformal mapping harmonic mapping harmonic quasiconformal mapping
  • 相关文献

参考文献9

  • 1Pavlovic, M., Boundary correspondence under harmonic quasiconformal homeomorphisms of the unit disk, Ann. Sci. Fenn. Math., 2002, 27: 365-372.
  • 2Kalaj, D., Quasiconformal and harmonic mappings between Jordan domains, Math. Z., 2008, 260(2): 237- 252.
  • 3黄心中.单位圆盘上的调和拟共形同胚[J].数学年刊(A辑),2008,29(4):519-524. 被引量:11
  • 4Kalaj, D., Quasiconformal harmonic functions between convex domains, Publ. Inst. Math., Nouv. Ser., 2004, 76(90): 3-20.
  • 5Duren, P.L., Theory of Hp Spaces, New York: Academic Press, 1970, 32-52.
  • 6Clunie, J., Sheil-Small, T., Harmonic univalent functions, Ann. Acad. Sci. Fenn. Set. A, I. Math., 1984, 9: 3-25.
  • 7Wang Chaoxiang and Huang Xinzhong, On the extension theorem for Zygmund functions in closed interval, J. Huaqiao Univ., 2006, 27: 119-122.
  • 8Choquet, G., Sur un type de transformation analytique generalisant la representation conforme et definie au moyen de fonctions harmoniques, Bull. Sci. Math., 1945, 69(2): 156-165.
  • 9Lewy, H., On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc., 1936, 42: 689-692.

二级参考文献8

  • 1Choquet G., Sur une type de transformation analytique generalisant la representation conforme et definie au moyen fonctions harmoniques [J], Bull. Sci. Math., 1945, 69(2):156 165.
  • 2Lewy H., On the non-vanishing of the Jacobian in certain one-to-one mappings [J], Bull. Amer. Math. Soc., 1936, 42:689-692.
  • 3Martio O., On harmonic quasiconformal mappings [J], Ann. Acad. Sci. Fenn. Math. Ser. AI, 1968, 425:3 10.
  • 4Pavlovic M., Boundary correspondence under harmonic quasiconformal homeomorphisms of the unit disk [J], Ann. Acad. Sci. Fenn. Math., 2002, 27:365 372.
  • 5Duren P. L., Theory of H^p Spaces [M], New York: Academic Press, 1970, 33 52.
  • 6Reich E., A quasiconformal extension using the parametric representation [J]. J. d' Analyse Math., 1990, 54:246 258.
  • 7Clunie J. and Sheil-Small T., Harmonic univalent functions [J], Ann. Acad. Sci. Fenn. Math., 1984, 9:3-25.
  • 8Wang Chaoxiang and Huang Xinzhong, On the extension theorem for Zygmund functions in closed interval [J], J. Huaqiao Univ., 2006, 27:119 122.

共引文献10

同被引文献15

  • 1DUREN P.Harmonic mappings in the plane[M].New York:Cambridge University Press,2004:6-7.
  • 2LEWY L. On the non-vanishing of the Jocobian in certain one-to-one mappings[J]. Bull Am Math Soc, 1932,42(10):689-692.
  • 3KALAJ D.Quasiconformal and harmonic mappings between Jordan domains[J].Mayh Z,2008,260(2):237-252.
  • 4PARTYKA D,SAKAN K.On an asymptotically sharp variant of Heinz’s inequality[J].Ann Acad Sci Fenn Math,2005,30:167-182.
  • 5MIROSLAV P.Boundary correspondence under harmonic quasiconformal homeomorphisma of the unit disk[J].Ann Acad Sci Fenn Math,2002,27(2):365-372.
  • 6ZHU Jian-feng,ZENG Xiao-ming.Estimate for Heinz inequality in the small dilatation of harmonic quasiconformal mappings[J].Journal of Computational Analysis and Applications,2011,13(6):1081-1087.
  • 7HEINZ E.über die l?sungen der minimalfl?chengleichung[J].Nachr Akad Wiss Math-Phys KI,1952,2:51-56.
  • 8HALL R R.On an inequality of Heina[J].J Analyse Math,1982,42(1):185-198.
  • 9王仙桃,王跃飞,黄曼子.双曲空间中的等距映射[J].中国科学:数学,2010,40(2):183-196. 被引量:1
  • 10QIU Song-Liang REN Liang-Yu.Sharp estimates for Hübner’s upper bound function with applications[J].Applied Mathematics(A Journal of Chinese Universities),2010,25(2):227-235. 被引量:3

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部