摘要
设G是一个有限群,k为一个特征不整除G的阶数的域,∧是一个扭kG-模代数,且∧*_σG(简写为∧*G)是一个交叉积代数.设L_∧(R_∧)为代数∧的模范畴中前缀(后缀)的投射(内射)维数至多为1的所有有限生成的不可分解模.本文主要研究了交叉积代数∧*G的模范畴左(右)部分L_(∧*G)(R_(∧*G))与代数∧的左(右)部分L_∧(R_∧)之间的关系.最后,利用本文得到的结果,考察了代数∧的相关性质在交叉积扩张下在代数∧*G中的保持性.
Let G be a finite group,k be a field with characteristic not dividing the order of G,and A be a twisted kG-module algebra such thatΛ*_σG orΛ* G for short exists as a crossed product algebra.In this paper,we study the relationship between the class L_(Λ*G)(or R_(Λ*G)), which consists of all finitely generated indecomposable A * G-modules whose predecessors(or successors) have projective dimension(or injective dimension) at most one,and the classL_Λ(or R_Λ).Then we study those properties,which rely on the left(or right) part,of A that are preserved under the extension of crossed product group algebra A * G.
作者
张棉棉
ZHANG Mianmian(Department of Mathematics,Hangzhou Normal University,Hangzhou,Zhejiang,310036,P.R.China)
出处
《数学进展》
CSCD
北大核心
2012年第1期55-62,共8页
Advances in Mathematics(China)
基金
Project supported by Zhejiang Provincial Natural Science Foundation of China(No.Y6100173)
NSFC(No.11026207)
关键词
模范畴的左(右)部分
交叉积
投射(内射)维数
left(right) part of a module category
crossed product
projective(injective) dimension