摘要
在饱和模型中,讨论了单子集映射m_T及标准部分逆映射st^(-1)的同态性质.证明了m_T能扩张成一个σ-同态的充要条件是X是可数紧空间.在一定条件下,st^(-1)是Borelσ-代数上的σ-同态映射,当且仅当X是预Hausdorff的,并给出了一个正则测度的一个Loeb表示.
In nonstandard saturated model,the properties of the homomorphism of monadic set-mapping m_T and standard part inverse mapping si^(-1) are discussed.It is proved that a sufficient and necessary condition,under which m_T can be extened to a cr-homomorphism,is that the space X is countably compact.Under some conditions,it is obtained that st^(-1) is aσ-homomorphic mapping on Borel cr-algebra,if and only if the space X is pre-Hausdorff.Finally, Loeb representation of a regular measure is shown.
出处
《数学进展》
CSCD
北大核心
2012年第1期120-124,共5页
Advances in Mathematics(China)
基金
陕西省自然科学基金资助项目(No.2007A12)
陕西省教育厅专项科研基金(No.11JK0507)