期刊文献+

基于K-means的无线家域网分簇算法 被引量:1

Clustering Algorithm for Wireless Home Area Networks Based on K-means
下载PDF
导出
摘要 针对无线家域网的应用特点,提出一种基于K-means的无线家域网分簇算法。以LEACH协议中的最优分簇个数作为K-means聚类的输入参数,在家域网基站上实现集中式按需分簇,并利用Silhouette值判定最优的分簇及簇头。实验结果表明,在无线家域网仿真场景中,该算法能获得较好的分簇聚类效果。 Aiming at the application characteristics of wireless Home Area Networks(HANs),this paper presents a K-means-based clustering algorithm for wireless HANs.The algorithm sets the optimal number of clusters in LEACH as the initial input parameters,and realizes the centralized and on-demand clustering on base station in home area networks,which makes use of Silhouette value to evaluate the optimal clustering.Experimental results show that this algorithm can get good clustering quality in wireless HANs simulation scene.
出处 《计算机工程》 CAS CSCD 2012年第1期96-98,110,共4页 Computer Engineering
基金 国家自然科学基金青年基金资助项目(61105070) 湖北省教育厅科学技术研究基金资助项目(B20111103)
关键词 评价函数 家域网 无线传感器网络 evaluation function cluster Home Area Networks(HANs) Wireless Sensor Network(WSN)
  • 相关文献

参考文献5

二级参考文献21

  • 1蔡自兴,李枚毅.多示例学习及其研究现状[J].控制与决策,2004,19(6):607-610. 被引量:12
  • 2詹德川,周志华.基于流形学习的多示例回归算法[J].计算机学报,2006,29(11):1948-1955. 被引量:16
  • 3Blockeel H, Page D, Srinivasan A. Multi-instance Tree Learning[C]//Proceedings of the 22nd International Conference on Machine Learning. Bonn, Germany: [s. n.], 2005.
  • 4Blake C, Keohg E, Merz C L. UCI Respositroy of Machine Learning Databases[EB/OL]. (2008-10-20). http://www.ics.uci. edu/-mlearn/mlrepository.html.
  • 5Heinzelman W, Chandrakasan A, Balakrishnan H. Energy-Efficient Communication Protocol for Wireless Micro Sensor Networks[C]//Proc. of the 33rd Annual Hawaii int,1 Conf. on System Sciences. Maui, USA: IEEE Computer Society, 2000: 3005-3014.
  • 6Manjeshwar A, Grawal D E TEEN: A Protocol for Enhanced Efficiency in Wireless Sensor Networks[C]//Proc. of the 15th Parallel and Distributed Processing Symp. San Francisco, USA: IEEE Computer Society, 2001:2009-2015.
  • 7Deb B, Bhatnagar S, Nath B. A Topology Discovery Algorithm for Sensor Networks with Applications to Network Management[R]. New Jersey, USA: Rutgers University. Technical Report: DCS-TR- 441, 2001.
  • 8Li Chengfa, Ye Mao, Chen Guihai, et al. An Energy-efficient Unequal Clustering Mechanism for Wireless Sensor Networks[C]// Proc. of the 2nd IEEE International Conference on Mobile Ad-hoe and Sensor Systems. Washington D. C., USA: [s. n.], 2005.
  • 9徐遵义,晏磊,宁书年,刘光军.基于Hausdorff距离的海底地形匹配算法仿真研究[J].计算机工程,2007,33(9):7-9. 被引量:15
  • 10Frey B J, Dueck D. Clustering by passing messages between data points. Science, 2007, 315(5814): 972-976

共引文献150

同被引文献1

  • 1刘莹.Internet组播体系结构[M]{H}北京:科学出版社,2008.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部