期刊文献+

复杂网络自相似特征演化模型研究 被引量:1

Research on Self-similarity Characteristic Evolution Model of Complex Network
下载PDF
导出
摘要 现实中有些复杂网络并不具备无尺度网络的偏好连接特性,但节点之间具有信息传递相似性。为此,研究基于自相似特征形成的复杂网络,提出一种具有自相似特征的网络演化模型。证明以节点自相似演化的网络具有自相似性,并以容量维数作为衡量尺度,揭示复杂网络的自相似性。理论分析及仿真结果表明,该模型能合理描述现实中复杂网络的演化及其特征。 Some complex networks in real world are not consenting the preference linking of Scale-Free(SF) network,but nodes has self-similarity.This paper proposes the network evolution model constituting based on self-similarity and researched the properties.To prove the network has the self-similarity formed with nodes self-similarity,it uses the volume dimension as the criterion reveal complex network self-similarity.Both theoretical analyses and simulation results show that the model can describe evolution and characters more exactly for many complex networks of the real world.
出处 《计算机工程》 CAS CSCD 2012年第1期197-198,214,共3页 Computer Engineering
基金 河南省科技厅基金资助项目(082102210085) 河南省教育厅基金资助项目(2009A520023)
关键词 复杂网络 自相似 信息传递 容量维数 complex network self-similarity information transfer volume dimension
  • 引文网络
  • 相关文献

参考文献4

二级参考文献14

  • 1蒋翠清,杨善林,黄梯云,梁昌勇.基于Agent的动态负载均衡技术及仿真实现[J].微电子学与计算机,2005,22(10):47-50. 被引量:9
  • 2刘滨,石峰.基于消息传递机制的动态负载平衡算法研究[J].计算机工程,2007,33(10):58-60. 被引量:5
  • 3Balasubramanian J,Schmldt D C,Dowdy L,et al.Evaluating the Performance of Middleware Load Balancing Strategies[C] //Proc.of the 8th IEEE Int'l Enterprise Distributed Object Computing Conference.[S.l.] :IEEE Press,2004.
  • 4Pellegrini M C,Riveill M.Component Management in a Dynamic Architecture[J].The Journal of Supercomputing,2003,24(3):151-159.
  • 5Kameda H,Fathy E S,Ryu I,et al.A Performance Comparison of Dynamic vs.Static Load Balancing Policies in a Mainframe.Personal Computer Network Model[C] //Proc.of IEEE CDC'00.Sydney,Australia:IEEE Press,2000:1415-1420.
  • 6Erdos P, Renyi A. On the Evolution of Random Graphs[J]. Public Mathematics Institute Hung Academic Science, 1960, 38(5): 17-61.
  • 7Watts D J, Strogatz S H. Collective Dynamics of "Small-world" Networks[J]. Nature, 1998, 393(4): 440-442.
  • 8Barabasi A L, Albertr. Emergence of Scaling in Random Networks[J]. Science, 1999, 286(15): 509-512.
  • 9Cladarellg, Capoccl A, De L R P, et al. Scale-free Networks from Varying Vertex Intrinsic Fitness[J]. Physical Review Letter, 2002, 89(25): 1-4.
  • 10Krapivsky P L, Redner S, Leyvraz F. Connectivity of Growing Random Networks[J]. Physical Review Letter, 2004, 85(21): 4629-4632.

共引文献9

同被引文献28

  • 1王先甲,全吉,刘伟兵.有限理性下的演化博弈与合作机制研究[J].系统工程理论与实践,2011,31(S1):82-93. 被引量:154
  • 2Ke Hu, Tao Hu, Yi Tang. Cascade defense via control of the fluxes in complex networks[J]. J. Stat. Phys. , 2010, 141: 555 - 565.
  • 3Gao Z, Kong D, Gao C. Modeling and control of complex dynamic systems: Applied mathematical aspects[ J ]. Journal of Applied Mathematics, 2012, 2012(4) : 1 - 18.
  • 4Sethna J P. Entropy, Order Parameters, and Complexity[ M]. Oxford: Oxford University Press, 2006.
  • 5Cao W, Chen G, Chen X. Optimal tracking agent: A new framework of reinforcement learning for multi-agent systems [ J ]. Concurrency and Computation: Practice and Experience, 2013, 25 : 2002 - 2015.
  • 6Newman M E J. The structure and function of complex networks[J]. SIAM Review, 2003, 45(2) : 167 -256.
  • 7Nepusz T, Negyessy L. Reconstructing cortical networks : Case of directed graphs with high level of reciprocity [ M ]. In: BelaBollobas, Robert Kozma, DeasoMiklos. Handbook of large-scale random networks. Hungary: Springer. 2008:325 - 368.
  • 8Cajueiro D O, Andrade R F S. Controlling self-organized criticality in complex networks[ J]. The European Physical Jour- nal B, 2010, 77:291 -296.
  • 9David Applebaum. Levy Processes and Stochastic Calculus[ M ]. Cambridge: Cambridge University Press, 2009.
  • 10Alas E, Leon J A, Vives J. On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility [ J ]. Finance and Stochastics, 2007, 11 (4) : 571 - 589.

引证文献1

;
使用帮助 返回顶部