期刊文献+

基于泊松-高斯混合噪声的最大似然改进算法 被引量:2

Modified Maximum Likelihood Algorithm Based on Poisson-Gaussian Mixed Noise
下载PDF
导出
摘要 传统的图像复原算法仅针对高斯噪声进行处理,没有考虑高斯及泊松混合噪声污染。为此,引入泊松-高斯混合分布的成像模型,对基于混合模型的最大似然算法进行有效近似,在此基础上提出基于泊松-高斯混合噪声的最大似然改进算法,避免对噪声敏感性和PSF初始估计的依赖。实验结果表明,与原有算法相比,改进算法复原效果明显,且稳健性较好。 Traditional image restoration algorithms always deal with Gaussian noise,however,the real astronomical images are polluted by Gaussian and Poisson mixed noise.Therefore,this paper introduces a imaging model of Poisson-Gaussian distribution,makes an effective approximation to the Maximum Likelihood(ML) algorithm based on the mixed model,and proposes a modified ML algorithm based on Poisson-Gaussian mixed noise to avoid the sensitivity to noise and the dependence to the original estimation of PSF.Experimental results show that this algorithm works well,and the robustness is well.
出处 《计算机工程》 CAS CSCD 2012年第1期222-224,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60778051)
关键词 图像复原 泊松-高斯混合噪声 最大似然算法 TV去噪 自适应参数估计 image restoration Poisson-Gaussian mixed noise Maximum Likelihood(ML) algorithm TV denoising adaptive parameter estimation
  • 相关文献

参考文献7

  • 1Holmes T J. Blind Deconvolution of Quantum-limited Imagery: Maximum-likelihood Approach[J]. Journal of the Optical Society of American A, 1992, 9(7): 1052-1061.
  • 2Benvenuto F, Camera A L. The Study of an lterative Method for the Reconstruction of Images Corrupted by Poisson and Gaussian Noise[J]. Inverse Problems, 2008, 24(3): 35016-35035.
  • 3Lanteri H, Theys C. Restoration of Astrophysical Images The Case of Poisson Data with Additive Gaussian Noise[J]. EURASIP Journal on Applied Signal Processing, 2005:(15): 2500-2513.
  • 4陈云龙,王平,王鹏.基于L-R非线性迭代的降质图像复原算法[J].计算机工程,2010,36(4):202-204. 被引量:19
  • 5Aubert G, Vest L. A Variational Method in Image Recovery[J]. SIAM Journal of Numerical Analysis, 1997, 34(5): 1948-1979.
  • 6周宏潮,朱炬波,王正明.混合泊松-高斯分布模型的参数估计[J].中国空间科学技术,2005,25(2):1-5. 被引量:8
  • 7崔宇,沈庭芝,朱亚平.一种基于空间自适应的盲图像复原算法[J].影像技术,2006,18(5):26-28. 被引量:1

二级参考文献11

  • 1赵剡,张怡,许东.基于总变分规整化的湍流退化图像复原RL算法[J].中北大学学报(自然科学版),2007,28(1):69-73. 被引量:6
  • 2Biggs D S C, Andrews M. lterative Blind Deconvolution of Extended Objects[C]//Proc. of International Conference on Image Processing. [S. l.]: IEEE Computer Society, 1997.
  • 3邹谋炎.反卷积与信号复原[M].北京:国防工业出版社,2001..
  • 4Snyder D L. Compensation for Readout Noise in CCD Image. J. Opt. Soc. Am. A, 1995, 12 (2): 272-283.
  • 5Snyder D L. Image Recovery from Data Acquired with a Charge-coupled-device Camera. J. Opt. Soc. Am. A,1993, 10 (5): 1014-1023.
  • 6Brian M B. Modeling the MTF and Noise Characteristics of Complex Image Formation Systems. SIMG-503, 1998.
  • 7Gonzalez,Richard E.Woods.数字图像处理[M].北京:电子工业出版社,2003:148-151.
  • 8Kundur D, Hatzinakos D. A novel blind deconvolution scheme for image restoration using recursive filtering [.J].IEEE Trans. Signal Process, 1998, 246(2):375-390.
  • 9Lagendijk R L, Biemond J, and Boekee D E. Regularised iterative image restoration with ring reduction[J]. IEEE Tram Acoust. Speech Signal Process. 1994, 36(12):2401-2409.
  • 10John H M, Kurtis D F. Numerical methods using MATLAB (Third edition) [M]. Publish house of electronics industry, 2002.

共引文献25

同被引文献11

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部