摘要
传统的图像复原算法仅针对高斯噪声进行处理,没有考虑高斯及泊松混合噪声污染。为此,引入泊松-高斯混合分布的成像模型,对基于混合模型的最大似然算法进行有效近似,在此基础上提出基于泊松-高斯混合噪声的最大似然改进算法,避免对噪声敏感性和PSF初始估计的依赖。实验结果表明,与原有算法相比,改进算法复原效果明显,且稳健性较好。
Traditional image restoration algorithms always deal with Gaussian noise,however,the real astronomical images are polluted by Gaussian and Poisson mixed noise.Therefore,this paper introduces a imaging model of Poisson-Gaussian distribution,makes an effective approximation to the Maximum Likelihood(ML) algorithm based on the mixed model,and proposes a modified ML algorithm based on Poisson-Gaussian mixed noise to avoid the sensitivity to noise and the dependence to the original estimation of PSF.Experimental results show that this algorithm works well,and the robustness is well.
出处
《计算机工程》
CAS
CSCD
2012年第1期222-224,共3页
Computer Engineering
基金
国家自然科学基金资助项目(60778051)
关键词
图像复原
泊松-高斯混合噪声
最大似然算法
TV去噪
自适应参数估计
image restoration
Poisson-Gaussian mixed noise
Maximum Likelihood(ML) algorithm
TV denoising
adaptive parameter estimation