期刊文献+

CRGT循环燃气轮机性能仿真 被引量:6

Simulation research of the CRGT cycle gas turbine performance
原文传递
导出
摘要 采用VC和MATLAB混合编程方法,进行了不同循环燃气轮机的变工况性能分析.其中,采用修正工程算法编制了工质热力性质计算程序,采用反向传播(BP)神经网络法建立了压气机和涡轮部件特性计算模型,采用模块化建模方法建立了简单循环、蒸汽回注(STIG)循环和化学回热(CRGT)循环性能仿真模型.仿真结果表明:在保持燃机几何结构和设计功率不变的条件下,STIG循环和CRGT循环均能降低燃气初温和提高循环热效率.其中,简单循环的热效率为35.16%,STIG循环的热效率可达到45%,CRGT循环的热效率可达到52.8%;为了进一步提高该型燃机的应用潜力和使用范围,可以将该型CRGT循环燃气轮机用于海水淡化应用中. Design and off-design performance of the different cycle in one certain three - spool gas turbine, with the combination programming method of VC and MATLAB was an- alyzed. Among it, used the modification engineering algorithm method to program the com- putation procedure of the working medium's thermodynamic properties, used the BP (back propagation) neural network method to build the calculation models of the compressor and turbine component characteristics; used the modular modeling method to build the dynamic simulation models of the simple eycle, the STIG (steam injection gas turbine) cycle and the CRGT (chemically recuperated gas turbine) cycle. The calculation results show that the STIG cycle and CRGT cycle can both reduce the combustor exit temperature and improve to- tal thermal efficiency, in which the simple cycle's efficiency was 35.16%, the STIG cycle was 45% and the CRGT cycle was 52.8% and in order to ensure the efficiency and the ap- plication areas, this CRGT cycle units can be used in the seawater desalination systems, un- der the safe operation areas and without the redesign of the components.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2012年第1期118-123,共6页 Journal of Aerospace Power
关键词 关键词:化学回热(CRGT)循环 混合编程 反向传播(BP)神经网络法 模块化建模 性能仿真 chemically recuperatedBP (back propagation)simulationgas turbine(CRGT) cycle neural network modularhybrid programmingmodeling performance
  • 相关文献

参考文献13

  • 1Jonsson M,Yan J Y.Humidified gas turbines a review of proposed and implemented cycles[J].Energy,2005,30(7):1013-1078.
  • 2Poullikka S A.An overview of current and future sustainable gas turbine technologies[J].Renewableand Suatainable Energy Reviews,2005,9(5):409-443.
  • 3Saad M A,Cheng D Y.The new LM2500 cheng cycle for power generation and cogeneration[J].Energy Conver Manage,1997,38(15):1637-1646.
  • 4Camporeale S M,Fortunato B.Performance of a mixed gassteam cycle power plant obtained upgrading an aer-oderivative gas turbine[J].Energy Conver Manage,1998,39(16):1683-1692.
  • 5Kesser K F,Hoffman M A,Baughn J W.Analysis of a basic chemically recuperated gas turbine power plant[J].Journal of Engineering for Gas Turbines and Power,1994,116(2):277-284.
  • 6Abdallah H,Harvey S.Thermodynamic analysis of chemically recuperated gas turbines[J].Int Therm Sci,2001,40(4):372-384.
  • 7瓦格纳,克鲁泽.水和蒸汽的性质[M].北京:科学出版社,2003.
  • 8Tirnovan R,Giurgea S,Miraoui A,et al.Modeling the ch-aracteristics of turbo-compressors for fuel-cell systems using hybrid method based on moving-least squares[J].Applied Energy,2009,86(7):1283-1289.
  • 9Ghorbanian K,Gholamrezaei M.An artificial neural netw-ork approach to compressor performance prediction[J].Applied Energy,2009,86(7):1210-1221.
  • 10冯凤珍 ,孙允标 ,余又红 .基于神经网络的压气机特性计算新方法[J].计算机与数字工程,2004,32(6):45-47. 被引量:9

二级参考文献4

  • 1[1]钟芳源.燃气轮机设计基础[M].北京:机械工业出版社,1985
  • 2[2]Simon Haykin.Neural Networks:A Comprehensive Foundation,2nd[M].Canada: Prentice-Hall Inc.2001
  • 3[4]Demuth Howard, Bedle Mark.Neural Network Toolbox. User's Guide, 4th[M]. Natick: The Mathworks Inc, 2001
  • 4戴葵.神经网络设计[M].北京:机械工业出版社,2002..

共引文献17

同被引文献64

  • 1伍赛特.燃气轮机设计原则及设计方法研究综述[J].中国标准化,2019(20):210-213. 被引量:6
  • 2伍赛特.燃气轮机的应用可行性研究综述[J].轻工科技,2019,0(12):52-54. 被引量:21
  • 3任继文,高锦昌,吴建全,郭海滨.俄罗斯坦克装甲车辆动力探析[J].车用发动机,2004(4):1-4. 被引量:3
  • 4仝庆华,袁益超,刘聿拯,胡晓红.燃气-蒸汽联合循环余热锅炉技术研究现状[J].能源研究与信息,2006,22(4):208-213. 被引量:12
  • 5Li Y G,Abdul Ghafir M F,Wang L. Nonlinear multi ple points gas turbine off-design performance adaptation using a genetic algorithm[J].Journal of Engineering for Gas Turbines and Power,2011,(07):071701.1071701.9.
  • 6He F,Li Z,Liu P. Operation window and part-load performance study of a syngas fired gas turbine[J].Applied Energy,2012,(01):133,141.
  • 7Colin K D,Gregory J,Charles W P. Gas turbine system simulation:an object-oriented approach.NASATM-106044[R].1992.
  • 8Brain P C,James L F. Object-oriented approach for gas turbine engine simulation.NASA-TM 106970[R].1995.
  • 9Reed J A,Afjeh A A. Interactive secure web-enabled air craft engine simulation using XML data binding integration.AIAA 2002 4058[R].2002.
  • 10Reed J A. Onyx:an objected oriented framework for com putational simulation of gas turbine systems[D].Toledo,US:University of Toledo,1998.

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部