期刊文献+

关于非线性不等式组Levenberg-Marquardt算法的收敛性(英文) 被引量:4

ON THE CONVERGENCE OF LEVENBERG-MARQUARDT METHOD FOR NONLINEAR INEQUALITIES
下载PDF
导出
摘要 本文研究了一类非线性不等式组的求解问题.利用一列目标函数两次可微的参数优化问题来逼近非线性不等式组的解,光滑Levenberg-Marquardt方法来求解参数优化问题,在一些较弱的条件下证明了文中算法的全局收敛性,数值实例显示文中算法效果较好. In this article, we study the solutions for a class of nonlinear inequalities. The nonlinear inequalities are approximated by a family of parameterized optimization problems with twice continuously differentiable objective functions, then a smoothing Levenberg-Marquardt method is applied to solve the parameterized optimization problems. The global convergence of the proposed method is established under some weak conditions. Numerical results show that the method performs well.
出处 《数学杂志》 CSCD 北大核心 2012年第1期25-34,共10页 Journal of Mathematics
基金 Supported by the Educational Office Foundation of Hunan Province (08C668) the Master,Doctor Foundation of Huaihua University
关键词 非线性不等式组 LEVENBERG-MARQUARDT算法 全局收敛 nonlinear inequalities Levenberg-Marquardt method global convergence
  • 相关文献

参考文献1

二级参考文献8

  • 1杨柳,陈艳萍.一种新的Levenberg-Marquardt算法的收敛性[J].计算数学,2005,27(1):55-62. 被引量:41
  • 2Daniel J. W. , Newton' s method for nonlinear inequalities[J], Numer. Math, 1973,21(7) : 381-387.
  • 3Sahba M. On the solution of nonlinear inequalities in afinite number of iterations[J], Numer. Math. , 1985,46() : 229-236.
  • 4Yabe H. , Takahashi T. Factorized quasi-Newton method for nonlinear least squares problems[J], Math. Program. ,1991,51() :75-100.
  • 5Zhang J, Chen L, Deng N. A family of sealedfaetorized Broyden-like methods for nonlinear least squares problems[M], SIAM J. Optim. , 2000.
  • 6Chen B. , Harker P. T. A noninterior continuation method for quadratic and linear programming[M], SIAM J. Optim., 1993.
  • 7Kanzow C. Some noninterior continuation methods for linear complementarity problems[M], SIAM J. Matrix Anal. Appl.. 1996.
  • 8Chen X. J. , Ye Y. On homotopy-smoothing methods for variational inequalities[M]. SIAM J. Control Optim. 1999,37() :589-616.

共引文献3

同被引文献19

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部