期刊文献+

利用二阶统计量的图像盲提取方法 被引量:1

Bind image extraction method using second-order statistics
原文传递
导出
摘要 为了从混叠的图像信号中分离源图像,提出一种基于二阶统计量的图像盲抽取方法。首先根据图像信号的非平稳特性构造用于估计分离向量的代价函数;然后通过最小化其函数获得最优分离向量,并实现逐次恢复源图像信号的目的。仿真实验结果表明,本文方法不仅能较好地实现多幅图像的盲分离,还能同时分离服从亚高斯分布的图像信号和超高斯分布的语音信号;与其它传统方法相比较,它具有更优越的估计性能。 To separate the source image one by one,we consider the blind image extraction of instantaneous mixtures using second-order statistics.A new cost function was constructed first by exploiting the non-stationary properties of image signals,and then the optimal extracted vectors were determined through minimizing the cost function,so as to separate the source image one by one.The simulation results show that the method can achieve the blind separation for mixed images.Moreover,it can separate images with sub-Gaussian distribution and speeches with super-Gaussian distribution.Compared with other conventional algorithms,it has higher accuracy.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2012年第1期188-195,共8页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(51179074) 广东省科技计划(2009390004202223)资助项目
关键词 二阶统计量 图像信号 盲抽取 非平稳 亚高斯分布 second-order statistics image signal blind extraction non-stationary sub-Gussian distribution
  • 相关文献

参考文献14

  • 1Hritoph A,Robert L,Markus R. RFID reader receivers for physical layer collision recovery[J]. IEEE Transactions on Communication, 2010,58(11) ; 3526-3537.
  • 2Ola F, Magnus B, Peter L. Exploratory MRI analysis by autocorrelation maximization [J].Neuro Image, 2002, 16 (2): 1256-1260.
  • 3Ohnishi N, Imiya A. Independent Component Analysis of Optical Flow for Robot Navigation[J].Neurocomputing, 2008,71(10-12) :2140-2163.
  • 4王荣杰,周海峰,詹宜巨.船舶噪声的自适应分离技术[J].中国航海,2011,34(3):10-14. 被引量:6
  • 5Persia L D, Milone D, Rufiner H L. Perceptual evaluation of blind source separation for robust speech recognition [J]. Signal Processing,2008,88(10) :2578-2583.
  • 6Hallez H, Vos M D, Vanrumste B. Removing muscle and eye artifacts using blind source separation techniques in ictal EEG source imaging[J]. Clinical Neurophysiology, 2009,120(7) : 1262-1272.
  • 7Cruces-AIvarez S A,Cichocki A,Amari S. From blind signal extraction to blind instantaneous signal separation:cri- teria,algorithm and stability[J].IEEE Transactions on Neural Network, 2004,15(4) : 859-873.
  • 8LIU W, Danilo P M. A normalized kurtosis-based algorithm for blind source extraction from noisy measurements[J]. Signal Processing,2006,86(7) : 1580-1585 .
  • 9郭艳菊,陈雷,于明,李锵,陈国鹰.基于细菌趋药性算法的盲图像分离方法[J].光电子.激光,2011,22(3):451-454. 被引量:1
  • 10Shi Z W,Zhang S C. Blind source extraction using generalized autocorrelations[J]. IEEE Transactions on Neural Networks, 2007,18(5) : 1516-1524.

二级参考文献15

  • 1高鹰,谢胜利.一种线性混合信号盲提取算法[J].电子与信息学报,2006,28(6):999-1003. 被引量:12
  • 2Kong Wei Yang Bin.Blind source separation of ship-radiated noise based on generalized Gaussian model[J].Journal of Systems Engineering and Electronics,2006,17(2):321-325. 被引量:2
  • 3Persia L D, Milone D, Rufiner H L, et al. Perceptual evaluation of blind source separation for robust speech recognition[J]. Signal Processing, 2008,88(10) : 2578-2583.
  • 4Hallez H, Vos M D, Vanrumste B, et al. Removing muscle and eye artifacts using blind source separation techniques in ictal EEG source imaging [J]. Clinical Neurophysiology, 2009,120 (7) :1262-1272.
  • 5PENG De-zhong, XIANG Yong. Underdetermined blind separa- tion of non-sparse sources using spatial time-frequency distri- butions[J]. Digital Signal Processing,2010,20(2) : 581-596.
  • 6Upendar J,Gupta C P,Singh G K. Design of two-channel quad- rature mirror filter bank using particle swarm optimization[J]. Digital Signal Processing, 2010,20(2) : 304-313.
  • 7Muller S D,Marchetto J,Airaghi S,et al. Optimization based on bacterial chemotaxis[J]. IEEE Trans on Evolutionary Computa- tion,2002,6( 1 ) : 16-29.
  • 8Delfosse N,Loubaton P. Adaptive blind separation of independ- ent source:a deflation approach [J]. Signal Processing, 1995, 45(1) :59-83.
  • 9Cichocki A, Thawonmas R, Amari S. Sequential blind signal ex- traction in order specified by stochastic properties[J]. Elec- tronics Letters, 1997,33(1), 64-65.
  • 10Hyvarinen A,Oja E A fast fixed-point algorithm for independ- ent component analysis[J] Neural Computation, 1997,9 (7) : 1483-1492.

共引文献5

同被引文献15

  • 1周勃,陈长征,费朝阳.基于改进Bussgang算法的多机组故障诊断仿真和试验[J].机械工程学报,2009,45(11):106-112. 被引量:3
  • 2罗忠辉,薛晓宁,王筱珍,吴百海,何真.小波变换及经验模式分解方法在电机轴承早期故障诊断中的应用[J].中国电机工程学报,2005,25(14):125-129. 被引量:67
  • 3Hameed Z, Hong Y S, Cho Y M, et al. Condition monitoring and fault detection of wind turbines and re- lated algorithms: A review[J]. Renewable Sustain- able Energy Reviews, 2009,13 1--39.
  • 4Roan M J, Erling J G, Sibul L H. A new non-linear a- daptive blind source separation approach to gear tooth failure detection and analysis[J]. Mechanical Systems and Signal Processing, 2007,16 719--740.
  • 5Bouguerrioul N, Haritopoulos M, Capdessus C. N vel cyclostationarity-based blind source separation gorithm using second-order statistical properties. T} ory and application to the bearing defect diagnosis[J] Mechanical Systems and Signal Processing, 2005,1 1 260--1 281.
  • 6Ferre A, Chevalier P. On the behavior of current sec- ond and higher order blind source separation methods for cyclostationary sources[J]. IEEE Transactions on Signal Processing, 2000, 48(6):1 712--1 725.
  • 7Serviere C, Fabry P. Blind source separation of noisy harmonic signals for rotating machine diagnosis[J]. Journal of Sound and Vibration, 2004, 272:317--339.
  • 8Sergio Cruces, Luis Castedo, Andrzej Cichocki. Ro- bust blind source separation algorithms using cumula- nts[J]. Neurocomputing, 2002, 49.87--118.
  • 9Paolo Pennacchi, Nicolo' Bachschmid, Andrea Vania. A model-based identification method of transverse cracks in rotating shafts suitable for industrial ma- chines[J]. Mechanical Systems and Signal Processing, 2006, 202 112--2 147.
  • 10Ashish K Darpe. A novel way to detect transverse sur- face crack in a rotating shaft[J]. Journal of Sound and Vibration, 2007, 305.151--171.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部