期刊文献+

压缩感知SAR成像中的运动补偿 被引量:6

Motion Compensation for Compressive Sensing SAR Imaging
下载PDF
导出
摘要 由于其具有压缩采样特性,压缩感知在高分辨SAR成像技术中得到了广泛应用。然而作为一种参数化的成像方法,基于压缩感知的成像方法对位置误差非常敏感。位置误差会造成图像偏离真实位置、散焦、甚至根本不能成像。该文针对SAR压缩成像系统中存在的运动误差,分析了平台非理想运动对回波信号的调制机理和运动相位误差对信号稀疏表征的影响,提出了基于传感器测量数据进行运动补偿的压缩感知SAR成像方法,通过在稀疏矩阵中引入附加项完成空不变运动误差的补偿。该方法不仅能以少量的测量孔径和测量数据获得重建目标空间的足够信息而且能有效降低运动误差对成像质量的影响,实现高分辨成像。 Because of its compressed sampling property,Compressive Sensing(CS) has wide application to high resolution imaging.But as a parametric imaging method,CS based imaging methods are sensitive to position error.Position error may cause defocusing,range migration,or even can not imaging.This paper concerns the analysis and compensation of trajectory deviations in airborne spotlight Synthetic Aperture Radar(SAR).A motion compensated CS SAR imaging scheme is proposed based on the sensor measured data.An additional item is introduced into the sparse matrix to achieve the compensation of space invariant motion error.This method can not only get enough information for imaging using few measure position and data,but also reduce the affection of motion error on image quality,achieve high resolution imaging.
出处 《电子与信息学报》 EI CSCD 北大核心 2012年第2期294-299,共6页 Journal of Electronics & Information Technology
基金 中央高校基础研究基金(ZYGX2009Z005) 国家自然科学基金(60772143)资助课题
关键词 SAR 压缩感知 运动补偿 非均匀采样 SAR Compressive Sensing(CS) Motion compensation Non-uniform sampling
  • 相关文献

参考文献2

二级参考文献34

  • 1Daniels D J. Surface-penetrating radar[J]. Electronics and Communication Engineering Jourual, 1996, 8(4): 165-182.
  • 2Fang G Y. The research activities of ultrawide-band (UWB) radar in China[C]. IEEE International Conference on Ultra-Wideband, Marina Mandarin Hotel, Singapore, Sept. 24-26, 2007: 43-45.
  • 3Xu X and Miller E L. Optimization of migration method to locate buried object in lossy medium[C]. IEEE International Geoscience and Remote Sensing Symposium, Toronto, Canada, Jun. 24-28, 2002: 337-339.
  • 4Leuschen C J and Plumb R G. A matched-filter-based reverse-time migration algorithm for ground-penetrating radar data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(5): 929-936.
  • 5Carin L, Geng N, and McClure M, et al.. Ultra-wide-band synthetic-aperture radar for mine-field detection[J]. IEEE Antennas and Propagation Magazine, 1999, 41(1): 18-33.
  • 6Hayakawa H, Nadamoto A, and Uesaka S. 3D radar imaging of buried objects using arbitrary scaning GPR[C]. Eighth International Conference on Ground Penetrating Radar, Queensland, Australia, May 23-26, 2000: 273-276.
  • 7Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 8Candes E J, Romberg J, and Tao T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006,59(8): 1207-1223.
  • 9Baraniuk R. Compressive sensing[J]. IEEE Signal Processing Magazine, 2007, 24(4): 118-121.
  • 10Candes E J. Compressive sampling[C]. International Congress of Mathematicians, Madrid, Spain, 2006, 3: 1433-1452.

共引文献80

同被引文献66

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部