期刊文献+

线型缩聚反应的计算机模拟

Computer Modeling of Linear Condensation Polymerization
原文传递
导出
摘要 缩聚反应是一类重要的高分子合成方法。其中最简单的反应为线型缩聚体系,它可分为两类,分别是含有两个可缩合的官能团的单体或单体对进行的相互缩合的体系。Flory在上世纪四十年代采用统计方法对该缩聚体系做过系统的理论研究,并在官能团等活性的假定下提出了著名的Flory分布函数,由此揭示了反应体系中数均聚合度xn、重均聚合度xw、不同聚合度分子的分布情况与反应程度p的关系。本文利用计算机模拟的方法,同样在官能团等活性的假定下模拟了线性缩聚反应的全反应过程,所得到的结果与用统计方法所得到的结果完全一致。本方法是对整个真实反应过程的直观模拟,对研究相似的以逐步聚合反应机理进行的反应具有普适性,并具有可拓展到模拟更真实的粘性聚合体系以及研究反应动力学的潜力。 Condensation polymerization is one of the most important methods employed to synthesize polymers. The simplest case of condensation polymerization is linear condensation polymerization, which can be categorized into two types and involves the reaction between monomers, or pair monomers, bearing two condensable functional groups. This reaction system has been systematically studied with statistical method by Flory in the 1940s and, under the postulate of equal reactivity of all functional groups, the famous Flory Distribution Functions were derived. These functions revealed the relationship between the properties of reaction system such as number-average degree of polymerization xn, the weight-average degree of polymerization xw and molecular weight distributions and the extent of reaction p. In this article, under the postulate of equal reactivity of all functional groups, the processes of two types of linear condensation polymerizations were modeled by computer programming. The result gained agreed with that of Flory's statistical method. Our method rendered a comparably more vivid picture of the whole process of real reaction and had the potential to be expanded to simulate the real viscous polymerization and to study the kinetics of the reaction system.
出处 《高分子通报》 CAS CSCD 北大核心 2012年第2期103-107,共5页 Polymer Bulletin
基金 国家自然科学基金(20974043)
关键词 线型缩聚反应 计算机模拟 Flory分布函数 Linear Condensation Polymerization Computer Modeling Flory Distribution Functions
  • 相关文献

参考文献1

二级参考文献4

  • 1Flory P J. J Am Chem Soc, 1939, 61(6): 1518-1521.
  • 2Lippman S B, Lajoie J, Moo B E. C++ Primer.李师贤,蒋爱军,梅晓勇,林瑛译.第四版.北京:人民邮电出版社,2006.
  • 3Alfrey T, Haas H C, Lewis C W. J Am Chem Soc, 1951, 73(6): 2851-2853.
  • 4Flory P J. Chem Rev, 1946, 39(1) : 137-197.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部