期刊文献+

负顾客、带启动期和备用服务员的M/M/1休假排队系统 被引量:7

The M/M/1 vacation queueing with negative customers,set-up times and spare servers
原文传递
导出
摘要 考虑一类有正、负顾客,带启动期和有备用服务员的M/M/1休假排队系统.负顾客一对一抵消队尾的正顾客(若有),若系统中无正顾客,到达的负顾客自动消失,负顾客不接受服务.系统中两个服务员,其中一个在岗工作时另外一个备用.上岗服务员若因为某种原因休假,备用服务员立即替换上岗.当系统变空时,系统关闭.用拟生灭过程和矩阵几何解方法,得到了稳态队长的分布,此外,证明了稳态条件下队长的条件随机分解并得到了附加队长的分布.最后,通过两个数值例子说明该模型可以较好的模拟一些实际问题. We consider an M/M/1 vacation queueing system with set-up period and spare servers, in which customers are either "positive" or "negative". Negative customers remove positive customers one by one only at the end (if present). When a negative customer arrives, if there isn't positive customer in system, it will disappear. Negative customers don't accept service. In the system, there are two servers, one goes on duty, the other keep on standby. If the first server is on vacation for some reason, the spare one replaces immediately. When system is empty, the system turn off. Using QBD (quasi-birth-and death) process and matrix-geometric solution method, we obtain the steady-st;ate distribution for queue length. Furthermore, we prove the conditional stochastic decomposition of queue length process in the stationary state and gain the distributions for additional queue length. Using two numerical examples, we verify that our model can represent some practical problems reasonably well finally.
机构地区 江苏大学理学院
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2012年第2期349-355,共7页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(70571030 10571076) 江苏大学科研项目(Y09A050)
关键词 负顾客 启动期 备用服务员 拟生灭过程和矩阵几何解 M/M/1休假排队系统 negative customers set-up Limes spare server quasi-birth-and-death process and matrix-geometric solution the M/M^1 vacation queueing system
  • 相关文献

参考文献8

二级参考文献33

  • 1史定华,张文国.具有多重延误休假的可修排队系统M^x/G(M/G)/1(M/G)分析[J].应用数学学报,1994,17(2):201-214. 被引量:24
  • 2岳德权,赵玮.具有延误休假的GI/M/1排队系统[J].运筹学杂志,1994,13(2):47-48. 被引量:3
  • 3曹晋华 程侃.服务台可修的M/G/1排队系统分析.应用数学学报,1982,5(2):113-127.
  • 4Takagi H. Queueing Analysis. Amsterdam: Elsevier Science Publishers, 1991.
  • 5Tian N, Zhang G. Vacation Queueing Models-theory and Applications. New York: Springer-Verlag, 2006.
  • 6Doshi B. Queueing Systems with Vacations-a Survey. Queueing Syst., 1985, 1(1): 29-66.
  • 7Teghem J. Control of the Service Process in a Queueing System: Eur. J. Oper. Res., 1986, 23: 141-168.
  • 8Servi L, Finn S. M/M/1 Queue with Working Vacations (M/M/1/WV). Performance Evaluation, 2002, 50:41-52.
  • 9Tian N, Zhang G. A Two Threshold Vacation Policy in Multiserver Queueing Systems, Eur. J. Oper. Res., 2006, 168(1): 153-163.
  • 10Xu X, Zhang G. Analysis of Multi-server Queue with a Single Vacation (e,d)-policy. Performance Evaluation, 2006, 63(8): 625-638.

共引文献33

同被引文献52

引证文献7

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部