期刊文献+

热处理对低活马氏体钢焊接热影响区的影响 被引量:6

Effects of Heat Treatment on CLAM Steel Welding Heat Affected Zone
下载PDF
导出
摘要 采用焊接热模拟技术,参照实际焊接工艺,模拟中国低活化马氏体钢(CALM钢)热影响区粗晶区(CGHAZ)热循环过程,并对热模拟后试样进行不同的回火处理。实验发现,CLAM钢热模拟试样经回火处理,碳化物弥散析出,同样的回火条件下,CLAM钢显微组织差异不明显,回火前较高的热量输入导致回火后硬度值更低;在相同的热循环条件下,较高的回火温度会引起晶粒的显著长大,试样硬度值降低。热模拟试样在较高的温度下回火,可以更为有效地改善CGHAZ区域硬度,随回火的温度的继续升高,试样硬度趋于平稳。综合考虑回火工艺CALM钢硬度值以及晶粒度的影响,推荐回火温度为760~810℃。 Referring to the actual welding process,the thermal simulation technique was used for simulating the thermal cycling of the coarse grained heat affect zone(CGHAZ) of CLAM steel,and then different tempering treatments were preceded on the samples after simulation.Dispersed precipitation of the carbide is found after the tempering treatment.In the same tempering condition,no obvious differences of microstructure was observed among the tested samples;higher heat input before tempering resulted in lower hardness after tempering.In the same thermal cycling condition,higher tempering temperature lead to remarkable increase of grain size and decrease of hardness.The hardness of CGHAZ can be effectively improved by tempering the simulated samples at higher temperature and then it changes to be steady with the continue increasing of temperature.Based on the comprehensive consideration of the effect of tempering process on both the hardness and the grain size of CLAM steel,the tempering temperature is advised to be 760℃~810℃.
出处 《热加工工艺》 CSCD 北大核心 2012年第3期1-3,6,共4页 Hot Working Technology
基金 国家自然科学基金资助项目(50905079) 江苏大学博士后项目(1143002045) 中国博士后基金项目(2011M501175)
关键词 CLAM钢 热模拟 热处理 显微硬度 CALM steel thermal simulation heat treatment micro-hardness
  • 相关文献

参考文献9

二级参考文献57

共引文献104

同被引文献44

  • 1伍小平.实验力学中现代光学方法的发展与应用前景[J].机械强度,1995,17(2):20-25. 被引量:11
  • 2李春京,黄群英,吴宜灿,FDS团队.中国低活化马氏体钢CLAM热等静压扩散焊接初步研究[J].核科学与工程,2007,27(1):55-58. 被引量:21
  • 3孔红雨,周浩,易传宝.脱氧剂对电焊条熔敷金属力学性能的影响[J].材料开发与应用,2007,22(5):7-10. 被引量:2
  • 4Tanigawa H, Shiba K, Stoller R E, et al. Status and key issues of reduced activation ferritic/martensitic steels as the structural material for a DEMO blanket [J]. Journal of Nuclear Materials, 2011,417:9-15.
  • 5Zhua Qiang, Lei Yu-cheng, Chena Xi-zhang, et al. Microstructure and mechanical properties in TIG welding of CLAM steel [J]. Fusion EngineeringandDesign, 2011,86:407-411.
  • 6Aubert P, Tavassoli F, Rieth M, et al. Low activation steels welding with PWHT and coating for ITER test blanket modules and DEMO[J]. JoumalofNuclearMaterials,2011,409 :156-162.
  • 7Karl Ehrlich,Bloom E E,Kondo T. International strategy for fusion materials development[J]. J. Nucl. Mater,2000,283-287: 79-88.
  • 8Jitsukawa S ,Tamura M. Development of an Extensive Database of Mechanical and Physical Properties for Reduced-activation Martensitic Steel F82H [J]. J. Nucl. Mater,2002,341:307-311: 179-186.
  • 9Kim S W,Yoon H K. Fatigue crack growth behavior of JLF-1 steelincluding TIG weldments [J]. J. Nucl. Mater, 2004,329-333 : 248-251.
  • 10Yu G,Nita N,Baluc N. Thermal creep behaviour ofthe EUROFER97 RAFM steel andtwo european ODS EUROFER 97 steels [J]. Fusion Engineering and Design,2005,75-79: 1037-1041.

引证文献6

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部