期刊文献+

液硅渗透法制备Ti_3SiC_2改性C/C-SiC复合材料 被引量:8

Fabrication of Ti_3SiC_2 modified C/C-SiC composites by liquid silicon infiltration
原文传递
导出
摘要 采用浆料浸渗结合液硅渗透法原位生成高韧性Ti3SiC2基体,制备Ti3SiC2改性C/C-SiC复合材料。研究了TiC颗粒的引入对熔融Si浸渗效果的影响,分析了Ti3SiC2改性C/C-SiC复合材料的微结构和力学性能。实验结果表明:TiC与熔融Si反应生成Ti3SiC2是可行的,而且C的存在更有利于生成Ti3SiC2;在含TiC颗粒的C/C预制体孔隙(平均孔径22.3μm)内,熔融Si的渗透深度1min内可达10.8cm;Ti3SiC2取代残余Si后提高了C/C-SiC复合材料的力学性能,C/C-SiC-Ti3SiC2复合材料的弯曲强度达203MPa,断裂韧性达到8.8MPa.m1/2;对于厚度为20mm的试样,不同渗透深度处材料均具有相近的相成分、密度和力学性能,无明显微结构梯度存在,表明所采用的浆料浸渗结合液硅渗透工艺适用于制备厚壁Ti3SiC2改性C/C-SiC复合材料构件。 In the paper, the high toughness matrix Ti3SiC2 was in-situ formed by the joint process of slurry infiltration and liquid silicon infiltration, and Ti3 SiC2 modified C/C-SiC composites were obtained. The effect of introduction of TiC particle on the infiltration of molten silicon were studied, and the microstructure and mechanical properties of C/C-SiC-Ti3 SiC2 composites were analysed. The results show Ti3 SiC2 can be formed by the reaction of TiC with liquid silicon during liquid silicon infiltration, and the existence of carbon is beneficial to the formation of TigSiC2. The infiltration depth of molten silicon in the micropore (mean size 22.3μm) can reach to 10.8 cm in one minute. The in- situ formed Ti3SiC2 replaces the residue silicon and improves both the flexural strength and the fracture toughness of C/C-SiC-Ti3SiC2 composites, which reach to 203 MPa and 8.8 MPaμm1/2 , respectively. For C/C-SiC-Ti3SiC2 composites with the depth of 20 mm, the materials with different infiltration depths displays similar phase composition, density and mechanical properties, and no obvious microstructure gradient exist, which indicate the joint process of slurry infiltration and liquid silicon infiltration can be used to fabricate the thick- wall components.
出处 《复合材料学报》 EI CAS CSCD 北大核心 2012年第1期104-110,共7页 Acta Materiae Compositae Sinica
基金 国家自然科学基金(50802074) 教育部新世纪优秀人才支持计划
关键词 C纤维 陶瓷基复合材料 预制体 损伤容限 强度 carbon fiber ceramic- matrix composites preform damage tolerance strength
  • 相关文献

参考文献25

  • 1Krenkel W,Berndt F.C/C-SiC composites for spaceapplications and advanced friction systems[J].Materials Science and Engineering A,2005,412(1/2):177-181.
  • 2Krenkel W,Hausherr J M,Reimer T,FrieβM.Design,manufacture and quality assurance of C/C-SiC composites forspace transportation systems[J].Ceramic Engineering andScience Proceedings,2004,25(4):49-58.
  • 3Krenkel W.C/C-SiC composites for hot structures andadvanced friction systems[J].Ceramic Engineering andScience Proceedings,2003,24(4):583-592.
  • 4张立同,成来飞.连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J].复合材料学报,2007,24(2):1-6. 被引量:205
  • 5田广来,徐永东,范尚武,张立同,柯少昌,成来飞,刘海平.高性能C/SiC刹车材料及其优化设计[J].复合材料学报,2008,25(2):101-108. 被引量:18
  • 6Wiederhorn S M,Chuck L,Fuller E R,Jr,Tighe N J.Creeprupture of siliconized silicon carbide[C]∥Tressler R E,Messing G L,Pantano C G,Newnham R E.TailoringMultiphase and Composite Ceramics.New York:PlenumPublishing Corp,1986:755-773.
  • 7Fan Shangwu,Zhang Litong,Xu Yongdong,Cheng Laifei,Lou Jianjun,Zhang Junzhan,Yu Lin.Microstructure andproperties of 3Dneedled-punched carbon/silicon carbide brakematerials[J].Composites Science and Technology,2007,67(11/12):2390-2398.
  • 8Cai Yanzhi,Xu Yongdong,Li Bin,Fan Shangwu,Zhang Litong,Cheng Laifei,Dong Benxing,Jiang Juan.Microstructures and mechanical properties of a low-cost three-dimensional needled carbon/silicon carbide composite[J].Materials Science and Engineering A,2008,497(1/2):278-282.
  • 9Cai Yanzhi,Fan Shangwu,Liu Heyi,Zhang Litong,Cheng Laifei,Jiang Juan,Dong Benxing.Mechanical properties of a3Dneedled C/SiC composite with graphite filler[J].MaterialsScience and Engineering A,2010,527(3):539-543.
  • 10Mühlratzer A.Production,properties and applications of ceramic matrix composites[J].C/Fiber DKG,1999,76(4):30-35.

二级参考文献28

  • 1张立同,成来飞,徐永东,刘永胜,曾庆丰,董宁,栾新刚.自愈合碳化硅陶瓷基复合材料研究及应用进展[J].航空材料学报,2006,26(3):226-232. 被引量:45
  • 2范尚武,徐永东,张立同,成来飞,楼建军.C/SiC摩擦材料的制备及摩擦磨损性能[J].无机材料学报,2006,21(4):927-934. 被引量:32
  • 3Schmidt S,Beyer S,Knabe H,Immich H,Meistring R,Gessler A.Advanced ceramic matrix composite materials for current and future propulsion technology applications[J].Acta Astronautica,2004,55(3/9):409-420.
  • 4Naslain R.Design,preparation and properties of non-oxide CMCs for application in engines and nuclear reactors:An overview[J].Composites Science and Technology,2004,64 (2):155-170.
  • 5Kermc M,Kalin M,Vi-zintin J.Development and use of an apparatus for tribological evaluation of ceramic-based brake materials[J].Wear,2005,259(7/12):1079-1087.
  • 6Krenkel W,Heidenreich B,Renz R.C/C-SiC composites for advanced friction systems[J].Advanced Engineering Materials,2002,4(7):427-436.
  • 7Imuta M,Gotoh J.Development of high temperature materials including CMCs for space application[J].Key Eng Mat,1999,164/165:439-444.
  • 8Zhang L T,Cheng L F,Luan X G,Mei H,Xu Y D.Environmental performance testing system for thermostructure materials applied in aeroengines[J].Key Eng Mat,2006,313:183-190.
  • 9Bourrat X,Alrivie M,Michaux A.TEM thin foil preparation for ceramic composites with multilayered matrix[J].Journal of the European Ceramic Society,2005,25(6):809-815.
  • 10Golczewski J A,Aldinger F.Phase separation in Si-(B)-C-N polymer-derived ceramics[J].Materials Research and Advanced Techniques,2006,97(2):114-118.

共引文献220

同被引文献135

引证文献8

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部