期刊文献+

主成分-线性判别分析在中药药性识别中的应用 被引量:24

Discrimination of properties of Chinese Traditional Medicine with principal component analysis-linear discriminant analysis
原文传递
导出
摘要 目的探索利用主成分-线性判别分析基于中药的功效主治属性判别其药性的可行性。方法收集《中华本草》中收录的药性明确、功效主治属性特征详尽的植物药1 725种,首先运用主成分-线性判别建立模型,以此模型对药性进行判别分类,采用10次5折交叉验证评价模型稳定性,然后按照随机抽样的原则,从寒、热性两类药材中分别随机抽取80%(共1 380种)的药材作为训练集建立模型,其余20%(共345种)药材组成测试集,做预测。结果运用主成分-线性判别模型,全部1 725种中药的组内判别正确率为94.43%,交叉验证平均正确率为91.54%。训练组的组内回代判别正确率为94.78%,测试组的预测正确率为90.14%。结论基于主成分-线性判别对中药药性进行判别,不仅保证了线性判别的正常运行,而且判别准确率高,模型稳定性好,能够为临床用药提供依据。 Objective To identify the feasibility of principal component analysis-linear discriminant analysis(PCA-LDA) to discriminate properties of Traditional Chinese Medicines(TCM) based on their efficacy and indication characters.Methods Information on efficacies,indications,and properties of 1 725 kinds of TCM was collected from "Chinese Herbal Medicine".PCA-LDA was applied to construct a model and to discriminate properties of TCM based on efficacies and indications of 1 725 kinds of TCM.10 times 5-fold cross-validation was used to evaluate the stability of this model.The overall data was randomly divided into two subsets: 80% of the data(1 380 samples) from TCM of cold nature and hot nature were used as the training set to construct the model,and the remaining 20%(345 samples) were used as the testing set to evaluate the prediction accuracy.Results According to the PCA-LDA model,the consistent accuracy was 94.43% for 1 725 kinds of TCM,and the mean accuracy of 10 times 5-fold cross-validation was 91.54%.The consistent accuracy in the training set was 94.78% and the predication accuracy in the testing set was 90.14%.Conclusion PCA-LDA discriminating properties of TCM could insure linear discrimination and guide clinical prescription with high discriminant accuracy and stability.
出处 《山东大学学报(医学版)》 CAS 北大核心 2012年第1期143-146,共4页 Journal of Shandong University:Health Sciences
基金 国家重点基础研究发展计划(973计划)课题:中药药性理论相关基础问题研究(2007CB512601)
关键词 主成分-线性判别 中药功效主治 药性 主成分分析 线性判别分析 Principal component analysis-linear discriminant analysis Efficacy and indication of Chinese Traditional Medicine Property of Chinese Traditional Medicine Principal component analysis Linear discriminant analysis
  • 相关文献

参考文献15

  • 1肖小河.中药药性研究概论[J].中草药,2008,39(4):481-484. 被引量:63
  • 2常惟智,刘树民,卢芳.中药药性与功效关联性的研究分析及展望[J].时珍国医国药,2009,20(3):633-634. 被引量:42
  • 3Thomaz C E,Kitani E C.A maximum uncertainty LDA-based approach for limited sample size problems-w ith ap-plication to face recognition[J].Journal of the BrazilianComputer Society,2006,12:7-18.
  • 4Swets D L,Weng J.Using Discriminant Eigenfeatures forImage Retrieval[J].IEEE Transaction on Pattern Analy-sis and Machine Intelligence,1996,18(8):831-836.
  • 5Rezzi S,Giani I,Heberger K,et al.Classification ofgilthead sea bream(Sparus aurata)from 1H NMR lipidprofiling combined w ith principal component and lineardiscriminant analysis[J].Journal of Agricultural andFood Chemistry,2007,55(24):9963-9968.
  • 6国家中医药管理局.中华本草[M].上海:上海科学技术出版社,2004:507.
  • 7Marengo E,Robotti E,Righetti P G,et al.Study of pro-teomic changes associated w ith healthy and tumoral mu-rine samples in neuroblastoma by principal component a-nalysis and classification methods[J].Clin Chim Acta,2004,345(1-2):55-67.
  • 8Yang J,Yang J.Why can LDA be performed in PCAtransformed space?[J].Pattern Recognition,2003,36(2):563-566.
  • 9Ge G,Wong G W.Classification of premalignant pancre-atic cancer mass-spectrometry data using decision tree en-sembles[J].BMC Bioinformatics,2008,9:275.
  • 10Ressom H W,Varghese R S,Zhang Z,et al.Classifi-cation algorithms for phenotype prediction in genomicsand proteomics[J].Front Biosci,2008,13:691-708.

二级参考文献28

共引文献150

同被引文献308

引证文献24

二级引证文献470

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部