期刊文献+

不同应变率下MgAlZnY合金的拉伸性能与断口研究 被引量:1

Tensile Property and Fracture Surface for MgAlZnY Alloys at Different Strain Rates
下载PDF
导出
摘要 利用材料试验机开展了室温拉伸实验,在0.001,0.1,0.6s-1不同应变率下,研究了Mg3Al1Zn2Y,Mg3Al2Zn2Y与Mg3Al6Zn2Y合金流动应力的应变率敏感性,其大小为Mg3Al2Zn2Y>Mg3Al1Zn2Y>Mg3Al6Zn2Y。基于分形理论和计算机图像处理技术,结合扫描电镜分析,研究了合金断裂特征,结果表明:合金在不同应变率拉伸下的断口分形行为显著,分形维数可将断口的韧脆性与形貌特征联系起来,分形维数越大,合金塑性相对越好,合金越倾向于延性断裂,断口形貌也越复杂;三种合金断裂特性的应变率敏感性大小为Mg3Al2Zn2Y>Mg3Al6Zn2Y>Mg3Al1Zn2Y,且表现出正负不同的应变率效应。 The tensile tests were conducted at room temperature using material test machine.The sensitivity of flow strength to strain rate was researched at strain rates of 0.001,0.1,0.6s-1 for Mg3Al1Zn2Y,Mg3Al2Zn2Y and Mg3Al6Zn2Y.The sensitivity sequence of flow strength is Mg3Al2Zn2YMg3Al1Zn2YMg3Al6Zn2Y.The rupture characteristics of magnesium alloys were described based on the fractal theory and technology of computer image disposal combined with scanning electron microscope.The results show that the fractal behavior of the alloys' fracture surface is remarkable.The brittleness,plasticity and the appearance of fracture surface can be related by the fractal dimension.The higher the fractal dimension,the better the alloy's plasticity,the more complex the fracture surface and the alloy inclines to ductile rupture.The sensitivity sequence of fracture surface to strain rate is Mg3Al2Zn2Y Mg3Al6Zn2YMg3Al1Zn2Y with positive or negative effect.
出处 《材料工程》 EI CAS CSCD 北大核心 2012年第1期66-70,76,共6页 Journal of Materials Engineering
基金 中国工程物理研究院科学技术发展基金(2010B0302041)
关键词 镁合金 应变率 断口 分形维数 magnesium alloy strain rate fracture surface fractal dimension
  • 相关文献

参考文献11

  • 1YOKOYAMA T.Impact tensile stress-strain characteristics of wrought magnesium alloys[J].Strain,2003,39(4):167-175.
  • 2EL-MAGD E,ABOURIDOUANE M.Characterization,modelling and simulation of deformation and fracture behaviour of the light-weight wrought alloys under high strain rate loading[J].International Journal of Impact Engineering,2006,32 (5):741-758.
  • 3MEYERS,MARC A.Dynamic Behavior of Materials[M].Berlin:Springer,1994.296-302.
  • 4ABBOTT T,EASTON MA,SCHMIDT R.Magnesium Technology 2003[R].Tokyo:Magnesium Technology Forum,2003.227-230.
  • 5WEI QIAN SONG,PETER BEGGS,MARK EASTON.Compressive strain-rate sensitivity of magnesium-aluminum die casting alloys[J].Materials and Design,2009,30(3):642-648.
  • 6AUNE TK,ALBRIGHT D,WESTENGEN H.Behavior of die cast magnesium alloys subject to rapid deformation[J].SAE Transactions,2000,109(5):555-559.
  • 7王小强,李全安,张兴渊.Y对AZ81镁合金组织和力学性能的影响[J].特种铸造及有色合金,2007,27(5):384-387. 被引量:14
  • 8刘方政,许春香,刘彦海,吕正玲.Y对AZ61镁合金金相组织和力学性能的影响[J].铸造设备研究,2008(1):15-17. 被引量:8
  • 9张金旺,许并社.Y对AZ31镁合金铸态组织和性能的影响[J].中北大学学报(自然科学版),2009,30(2):192-196. 被引量:11
  • 10麻彦龙,左汝林,汤爱涛,张静,潘复生.钇对铸态ZK_(60)镁合金晶界析出相形态的影响[J].重庆大学学报(自然科学版),2005,28(2):51-54. 被引量:9

二级参考文献35

  • 1麻彦龙,左汝林,汤爱涛,张静,潘复生.ZK60镁合金铸态显微组织分析[J].重庆大学学报(自然科学版),2004,27(8):52-56. 被引量:22
  • 2张少卿,罗治平.MB25镁合金中的准晶体与晶体相的研究[J].分析测试学报,1994,13(6):35-37. 被引量:6
  • 3裴利霞,张金山,高义斌,许春香,韩富银,王红霞,赵兴国,梁伟.稀土元素镧对AZ91镁合金显微组织及硬度的影响[J].铸造设备研究,2005(1):20-22. 被引量:35
  • 4钟皓,张慧,翁文凭,陈琦,詹志强,闫蕴琪.热挤压工艺对AZ31镁合金组织与力学性能的影响[J].金属热处理,2006,31(8):79-82. 被引量:27
  • 5Benedyk Joseph C.Magnesium advances in automotive applications[J].Light Metal Age,2005,63(3):36.
  • 6Maeng D Y,Kim T S.Microstructure and strength of rapidly solidified and extruded Mg-Zn alloys[J].Scripts mater,2000,43:385.
  • 7Watanabe H.Realization of high-strain-rate superplasticity at low temperatures in a Mg-Zn-Zr alloy[J].Materials Science and Engineering,2001,A307:1 1 9.
  • 8Luo A A.Recent magnesium alloy development for elevated temperature applications[J].International Materials Reviews,2004,49(1):13-30.
  • 9Apps P J,Karimzadeh H,King J F,et al.Precipitation reactions in magnesium-rare earth alloys containing Yttrium[J].Gadolinium or Dysprosium,2003,48(3):1023-1028.
  • 10Baghni l M,Wu Yinshun.Mechanical properties and potential applications of magnesium alloys[J].Transactions of Nonferrous Metals Sociey of China(English Edition),2003,13(6):1253-1259.

共引文献26

同被引文献29

  • 1ZHU X Y, PAN F,LIU X J ,et al. Microstructure and mechani- cal properties of nanoscale Cu/Ni multilayers[J]. Materials Sci ence and Engineering A, 2010,527 (4- 5) : 1243 - 1248.
  • 2CHELLALI M R, BALOGH Z, BOUCHIKHAOUI H. Triple junction transport and the impact of grain boundary width in nanocrystalline Cu[J]. Nano Letter,2012,12(7) :3448-3454.
  • 3LU L, LI S X, LU K. An abnormal strain rate effect on tensile behavior in nanoerystalline eopper[J]. Scripta Materialia, 2001, 45(10) :1163-1169.
  • 4SCHWAIGER R, MOSNR B, CHOLLACOOP N, et al. Some critical experiments on the strain-rate sensitivity of nanocrystal- line nickel[J]. Acta Materialia ,2003,51(17) :5159-5172.
  • 5VO N Q, AVERBACK R S, BELLON P, et al. Yield strength in nanocrystalline Cu during high strain rate deformation[J]. ScriptaMaterialia, 2009,61(1) :76-79.
  • 6DONGARE A M, RAJENDRAN A M, MATTINA B L. Atomic scale simulations of ductile failure micromechanism in nanocrystal- line Cu at high strain rates[J]. Physical Review B,2009,80(10) : 4108-4118.
  • 7DERLET P M, SWYGENHOVEN H V. Atomic positional dis- order in fcc metal nanocrystalline grain boundaries[J]. Physical Review B,2003,67(1) :4202-4209.
  • 8PLIMPTON S J. Fast parallel algorithms for short range molec- ular dynamics[J]. Journal of Computational Physics , 1995,117 (1):1-19.
  • 9MEHL M J, PAPACONSTANTOPOULOS D A. Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations[J]. Physical Review B, 2001,63 (22) :4106-4121.
  • 10HOOVER W G. Canonical dynamics: equilibrium phase-space distributions[J]. Physical Review A, 1985,a1(a) : 1695- 1697.

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部