期刊文献+

一种有效的社会网络社区发现模型和算法 被引量:51

An Effective Model and Algorithm for Community Detection in Social Networks
下载PDF
导出
摘要 社会网络的社区发现存在划分效果较好的算法时间复杂度过高、现有快速划分算法划分质量不佳、缺乏表达和充分利用个体和链接属性信息的模型和机制等问题.针对这些问题,提出了一种边稳定系数模型和一种能表达个体间关系紧密度的完全信息图模型,在此基础上设计和实现了一种有效的社区发现算法.提出的完全信息图模型具有较高通用性,适用于需要融合个体和链接属性的社区发现算法.通过系列实验表明,所提出的以边稳定系数模型和完全信息图为基础的算法,对社会网络中的社区发现问题是有效的.算法不仅具有较快的速度,也能适用于带权与不带权的网络,得到的社区划分结果也具有较高的划分质量. In the research area of community detection in social network, there exist problems such as some algorithms with comparatively satisfactory detection result having high time complexity, current fast algorithms for large scale network resulting in low quality partition results, and lacking of model and mechanism to express and utilize actor and link attributes. To solve these problems, this paper proposes a model of edge stability coefficient and a model of complete information graph that can express the tightness of relation among actors, based on which an effective community detection algorithm is designed and implemented. The proposed model of complete information graph has high generality which makes it applicable to different community detection algorithms that need the input of fused information from actor and link attributes. Experiments show that the algorithm based on models of edge stability coefficient and complete information graph is effective to the problem of community detection in social networks with relatively less time cost. The algorithm is applicable to both weighted and unweighted networks with a comparatively fast speed and high quality partition result as well.
出处 《计算机研究与发展》 EI CSCD 北大核心 2012年第2期337-345,共9页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60905029) 北京市自然科学基金项目(4112046) 中央高校基本科研业务费项目(2011JBM025)
关键词 社会网络 边稳定系数 社区发现 信息融合 链接挖掘 social network edge stability coefficient community detection information fusion link mining
  • 相关文献

参考文献22

  • 1Getoor L, Diehl C P. Link mining: A survey [J]. SIGKDD Explorations, 2005, 7(2): 3-12.
  • 2杨楠,弓丹志,李忺,孟小峰.Web社区发现技术综述[J].计算机研究与发展,2005,42(3):439-447. 被引量:35
  • 3Girvan M, Newman M E J. Community structure in social and biological networks [J]. Proc of the National Academy of Sciences, 2002, 99(12): 7821-7826.
  • 4Han Jiawei. Data Mining= Concepts and Techniques [M]. Kamber M. 2nd ed. Beijing: China Machine Press, 2006.
  • 5Newman M E J. Detecting community structure in networks [J]. The European Physical Journal B Condensed Matter and Complex Systems, 2004, 38(2): 321-3:30.
  • 6Newman M E J. Fast algorithm for detecting community structure in networks[J]. Physical ReviewE, 2004, 69(6): 066133.
  • 7Brandes U. faster algorithm for betweenness centrality [J]. Journal of Mathematical Sociology, 2001, 25:163-177.
  • 8Clauset A, Newman M E J, Moore C. Finding community structure in very large networks [J]. Physical Review E, 2004, 70(6): 066111.
  • 9Blondel V D, Guillaume J, Lambiotte R, et al. Fast unfolding of communities in large networks [J].Journal of Statistical Mechanics: Theory and Experiment, 2008 (10) : 1742-5468.
  • 10Rosvall M, Bergstrom C. Maps of random walks on complex networks reveal community structure [J]. Proc of the National Academy of Sciences, 2008, 105 (4): 1118-1123.

二级参考文献27

  • 1M. Toyoda, Masaru Kitsuregawa. A Web community chart for navigating related communities. The 10th Int'l WWW Conf.,Hong Kong, 2001.
  • 2P. K. Reddy, Masaru Kitsuregawa. Inferring Web communities through relaxed-cocitation and power-law. Kitsuregawa Lab,Annual Report, 2001.
  • 3A. Z. Brodei', R. Kumar, F. Maghoul, et al. Graph structurein the web. Computer Networks, 2000, 33( 1-6): 309--320.
  • 4R. Albert, H. Jeong, A. -L. Barab6si. Diameter of the World-Wide Web. Nature, 1999, 401: 130--131.
  • 5D. M. Pennock, G. W. Flake, S. Lawrence. Winners don't take all: Characterizing the competition for links on the web.[EB/OL] . http://www.pnas.org/cgi/content/full/99/8/5207,2002-04-16.
  • 6M. R. Henzinger, R. Motwani, C. Silverstein. Challenges in web search engines. The 25th Int' 1SIGIR Conf. on Research and Development in Information Retrieval, Tampere, Finland, 2002.
  • 7S. Chakrabarti, B. E. Dom, D. Gibson, et al. Topic distillation and spectral filtering. Artificial Intelligence Review,1999, 13(5-6): 409--435.
  • 8D. Zhang, Y. Dong. An efficient algorithm to rank web resources. Computer Networks, 2000, 33(1-6): 449--455.
  • 9S. Chakrabarti, B. E. Dom, S. R. Kumar, et al. Mining the Web's link structure. IEEE Computer, 1999, 32(8): 60--67.
  • 10J. Dean, M. R. Henzinger. Finding related pages in the world wide web. The 8th Int'l WWW Conf., Toronto, Canada, 1999.389-- 401.

共引文献34

同被引文献585

引证文献51

二级引证文献252

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部