期刊文献+

基于位置和运动轨迹的老年人异常行为检测 被引量:11

Detection of abnormal behavior for elderly based on position and motion trajectory
下载PDF
导出
摘要 针对老年人异常行为检测,分析老年人日常行为特点及规律,对其日常运动轨迹进行采样和量化,并使用基于改进的HMM模型进行轨迹行为习惯建模,结合模糊C均值聚类算法提取轨迹标志点确定HMM初值,并通过改进的重估公式和反馈滑动窗口进行训练与检测。实验结果表明,运动轨迹可以作为老年人行为习惯的一个重要描述形式,利用位置和轨迹对家庭环境下的异常行为检测是有效的,且能保证较高的准确率和较低的漏检率。 For abnormal behavior detection of the elderly,some characteristics and rules of daily behavior can be gotten from the daily positon and motion trajectory.Through the sampling and quantization of trajectory,an efficient algorithm is proposed for abnormal detection based on the imroved HMM model and feedback sliding window.The trajectory landmark points and HMM initial value with the fuzzy C-means clustering is identified and the improved formula revaluation is given,then training and testing with feedback sliding window is carried on.Comparative experiments show that the method is effective for the abnormal detection in daily with position and trajectory and can ensure higher accuracy and lower false negative rate.
出处 《计算机工程与设计》 CSCD 北大核心 2012年第2期735-739,共5页 Computer Engineering and Design
基金 国家自然科学基金项目(60975062) 河北省自然科学基金项目(F2010001295)
关键词 行为检测 运动轨迹 滑动窗口 标志点 HMM behavior detection motion trajectory sliding window landmark points HMM
  • 相关文献

参考文献2

二级参考文献17

  • 1代科学,张军,李国辉,来旭.监控视频运动目标的频繁轨迹模式挖掘[J].国防科技大学学报,2006,28(6):108-113. 被引量:5
  • 2尹清波,张汝波,李雪耀,王慧强.基于动态马尔科夫模型的入侵检测技术研究[J].电子学报,2004,32(11):1785-1788. 被引量:9
  • 3李玉鑑.符号序列之间的归一化距离度量[J].北京工业大学学报,2005,31(4):439-442. 被引量:5
  • 4Hu W M, Tan T N, Wang L, et al. A survey on visual surveillance of object motion and behaviors [J]. IEEE Transactions on Systems, Man and Cybernetics-Part C: Applications and Reviews, 2004, 34(3): 334-352
  • 5Johnson N, Hogg D. Learning the distribution of object trajectories for event recognition[J]. Image and Vision Computing, 1996, 14(8): 609-615
  • 6Sumpter N, Bulpitt A. Learning spatio-temporal patterns for predicting object behaviour [J]. Image and Vision Computing, 2000, 18(9): 697-704
  • 7Fernyhough J, Cohn A G, Hogg D C. Constructing qualitative event models automatically from video input [J]. Image and Vision Computing, 2000, 18(9): 81-103
  • 8Stauffer C, Eric W, Grimson L. Learning patterns of activity using real-time tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22 (8) : 747-753
  • 9Hu W M, Xie D, Tan T N, etal. Learning activity patterns using fuzzy self-organizing neural network [J]. IEEE Transactions on Systems, Man and Cybernetics-Part B:Cybernetics, 2004, 34(3): 1618-1626
  • 10Vlachos M, Kollios G, Gunopulos D. Discovering similar multidimensional trajectories [C] //Proceedings of the 18th International Conference on Data Engineering, San Jose, 2002:673-684

共引文献12

同被引文献87

引证文献11

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部