期刊文献+

RTS游戏中用户行为的神经网络预测模型 被引量:1

Neural network-based behavior prediction models for RTS game players
下载PDF
导出
摘要 即时战略游戏(简称RTS游戏)中,用户的行为由于游戏自身庞大的决策空间而难以预测。针对这个问题,提出了通过对RTS游戏的对战记录进行分析,建立5种结构的神经网络模型来预测用户行为的方法。模型考虑了不同时间片的状态对于决策行为的影响,设计了单时间片输入和双时间片输入的神经网络,并与基于动态贝叶斯网络的模型进行了比较。实验结果表明,基于单时间片输入的神经网络模型能够更加快速地完成训练过程并达到满意的预测准确度。 Due to the large decision space of real time strategy(RTS) games,game players' behaviors are difficult to predict especially when facing different situations.In this case,five kinds of neural network models are constructed by analyzing RTS game data to predict players' behaviors in different states.Considering the influence of time slices on player behaviors,neural networks are designed respectively with single time slice input and double time slice input,and then compared their prediction performance with dynamic Bayesian network based model.Experimental results show that the model with single time slice input is the most efficient one and can achieve satisfactory prediction accuracy.
出处 《计算机工程与设计》 CSCD 北大核心 2012年第2期740-744,共5页 Computer Engineering and Design
基金 国家自然科学基金项目(60903088) 河北省自然科学基金项目(F2009000227) 河北省第二批百名优秀人才支持计划基金项目(CPRC002) 2010年保定市科学技术研究与发展指导计划基金项目(10ZG008)
关键词 即时战略游戏 行为预测 神经网络 动态贝叶斯网络 时间片 real time strategy(RTS) game behavior prediction artificial neural network dynamic Bayesian network time slice
  • 相关文献

参考文献15

  • 1Schadd F. Opponent modeling in realtimestrategy games [C]. Proc of 8th International Conference on Intelligent Games and Simulation, 2007: 61-68.
  • 2Ontanon S. Case-based planning and execution for real-time strategy games [G]. LNCS 4626: Proceedings of the 7th International Conference on Case-Based Reasoning: Case-Based Reasoning Research and Development, 2007:164-178.
  • 3Hsieh J L. Building a player strategy model by analyzing replays of real time strategy games [C]. Proc of InternationalJoint Conference on Neural Networks, 2008 : 3106-3111.
  • 4Sharma M. Transfer learning in real time strategy games using Hybrid CBR/RL [C]. Proc of International Joint Conference on Artificial Intelligence, 2007: 1041-1046.
  • 5Baumgart R. Case-based player simulation for the commercial strategy game defeon[C]. CGAME, 2007.
  • 6Aha D. Learning to win: Case-based plan selection in a realtime strategy game [C]. Proceedings of 6th International Con ference on Case-Based Reasoning, 2005:520.
  • 7Louis S J. Playing to learn: Case-injected genetic algorithms for learning to play computer games [J]. IEEE Transactions on Evolutionary Computation, 2005, 9 (6): 669-681.
  • 8Ng P H F. Learning player behaviors in real time strategy games from real data [G]. LNCS 5908: Proc of Rough Sets, Fuzzy Sets, Data Mining and Granular Computing, 2009t 321-327.
  • 9HUANG G B. A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation [J]. Neural Networks, 2005, 16 (1): 57-67.
  • 10WANG Z. A comparison among three neural networks for text classification [C]. Signal Processing, 2006 : 16-20.

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部