摘要
即时战略游戏(简称RTS游戏)中,用户的行为由于游戏自身庞大的决策空间而难以预测。针对这个问题,提出了通过对RTS游戏的对战记录进行分析,建立5种结构的神经网络模型来预测用户行为的方法。模型考虑了不同时间片的状态对于决策行为的影响,设计了单时间片输入和双时间片输入的神经网络,并与基于动态贝叶斯网络的模型进行了比较。实验结果表明,基于单时间片输入的神经网络模型能够更加快速地完成训练过程并达到满意的预测准确度。
Due to the large decision space of real time strategy(RTS) games,game players' behaviors are difficult to predict especially when facing different situations.In this case,five kinds of neural network models are constructed by analyzing RTS game data to predict players' behaviors in different states.Considering the influence of time slices on player behaviors,neural networks are designed respectively with single time slice input and double time slice input,and then compared their prediction performance with dynamic Bayesian network based model.Experimental results show that the model with single time slice input is the most efficient one and can achieve satisfactory prediction accuracy.
出处
《计算机工程与设计》
CSCD
北大核心
2012年第2期740-744,共5页
Computer Engineering and Design
基金
国家自然科学基金项目(60903088)
河北省自然科学基金项目(F2009000227)
河北省第二批百名优秀人才支持计划基金项目(CPRC002)
2010年保定市科学技术研究与发展指导计划基金项目(10ZG008)
关键词
即时战略游戏
行为预测
神经网络
动态贝叶斯网络
时间片
real time strategy(RTS) game
behavior prediction
artificial neural network
dynamic Bayesian network
time slice