期刊文献+

基于柔性逻辑的智能控制器设计与仿真

Study on Intelligent Control Model Based on Flexible Universal Logics
下载PDF
导出
摘要 研究倒立摆复杂系统优化控制问题,传统优化控制要建立精确数学模型,但与实际不符。对复杂系统采用具有认知和仿人功能、适应不确定环境等特性的智能控制方法较传统控制方法更具优势。为此,提出一种柔性泛逻辑学的智能控制模型,具有三个典型参数(e、h、k),分别反映了控制过程中的决策门限、被控量之间的关系和测量误差,能更好地掌握控制的思路。对三级倒立摆的控制采用上述方法进行仿真,实验证明了模型的正确性和有效性,并且具有良好的抗干扰能力,为复杂系统控制寻求了一种新的有效途径。 For the control of the complex system such as the inverted pendulum, the intelligent control methods with the functions of cognition and imitating human and adapted uncertain environment have great advantages than the tranditional ones. A new intelligent control model based on the flexible univsal combination model was proposed. The control model has three typical parameters, namely e, h and k, which denote the decision threshold, the relationship between the controlled varialbes and measurement error during the procedure of control and decision respectively, and can simulate the human's control methods better. The simulation experiments for the three - order inverted pendulum prove the validily of proposed method. And the control system has good abilities of anti - jamming, This provides a new way for the control of the complex system.
作者 刘丽
出处 《计算机仿真》 CSCD 北大核心 2012年第2期180-183,244,共5页 Computer Simulation
基金 华北电力大学科研基金资助项目(200812010) 西北工业大学基础研究基金(W018101) 陕西省教育厅专项科研项目(07JK255)
关键词 智能控制 泛逻辑学 相关性 倒立摆 Intelligent control Universal logics Correlation The inverted pendulum
  • 相关文献

参考文献2

二级参考文献13

  • 1王万森,何华灿.基于泛逻辑学的柔性命题逻辑研究[J].小型微型计算机系统,2004,25(12):2116-2119. 被引量:6
  • 2何华灿.论第二次逻辑学革命[A]..中国人工智能进展(2003)[C].北京:北京邮电大学出版社,2003.32-41.
  • 3Roeper P, Leblanc H. Probability Theory and Probability Logic. Toronto: University of Toronto Press, 1999.
  • 4Nilsson NJ. Probalistic logic. Artificial Intelligence, 1986,28:71-81.
  • 5Lewis D. Probabilities of conditionals and conditional probabilities. Philosophy Review, 1976,85(3):297-315.
  • 6Goodman IR, Ncuyen HT, Walker EA. Conditional Inference and Logic for Intelligent Systems: A Theory of Measure_Free Conditioning. Amsterdam North_Holland, 1991.
  • 7Goodman IR, Gupta NM, Ncuyen HT, Rogers GS. Conditional Logic in Expert Systems. Amsterdam North_Holland, 1991.
  • 8Esteva F, Trillas E, Domingo X. Weak and Strong Negation Functions for Fuzzy Set Theory. The 11th Int Sym on Multiple-Valued Logic, 1981, 23~26.
  • 9Jenei S. New Family of Triangular Norms via Contrapositive Symmetrization of Residuated Implications. Fuzzy Sets and Systems, 2000, 110(2): 157~174.
  • 10Zadeh L A. Fuzzy Sets. Information and Control, 1965, 8(3): 338~357.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部