期刊文献+

一种改进的非下采样轮廓波变换图像去噪算法 被引量:5

Improved Image Denoising Algorithm Based on Non-subsampled Contourlet Transform
下载PDF
导出
摘要 优化图像去噪问题,在非下采样轮廓波变换图像去噪中,收缩阈值的确定仅依赖变换子带系数的幅值,使得过多图像系数和噪声系数一并去除,导致滤波图像模糊。从检测变换子带几何结构出发,引入自蛇模型对子带系数作几何结构检测并抑制噪声后,估计双阈值将子带系数划分为三类并作不同处理,实现对噪声系数的去除和对图像系数的保护。实验结果表明,相对现有典型算法,改进算法获得的峰值信噪比提高了0.1-0.9dB,图像系数被更好识别和保留,滤波图像中边缘与区域细节损失减少,提高去噪效果,保留图像的有效信息。 Many image denoising algorithms based on non -subsampled contourlet transform (NSCT) remove image coefficients excessively due to the decision of shrinkage thresholds solely depends on coefficient amplitudes, which leads to blurred edges in denoised images. This paper started with geometric structure detection of a NSCT subband, and the self - snake model was introduced to conduct the detection and noise coefficient suppression. And then, two thresholds were estimated to classify the coefficients in a subband into three categories, they would be processed differently for the purpose of image coefficients protection with removal of noise. Experiments results indicate that, compared to current typical algorithms, the proposed algorithm recognizes and protects weak image coefficients effectively. This capability produces higher PSNR values between 0. 1 to 0. 9dB and better protection of geometric structures, which leads to less blurred denoised images.
作者 谭勇
出处 《计算机仿真》 CSCD 北大核心 2012年第2期245-248,共4页 Computer Simulation
关键词 图像去噪 非下采样轮廓波变换 几何结构检测 自蛇模型 Image denoising Non - subsampled contourlet transform Detection on geometric structure Serf - snake model
  • 相关文献

参考文献10

  • 1S G Chang, B Yu, M Vetterli. Adaptive wavelet threshoding for image denoising and compression [ J ]. IEEE Trans. Image Prec. 2000,9(9) :1532 - 1546.
  • 2戴维,于盛林,孙栓.基于Contourlet变换自适应阈值的图像去噪算法[J].电子学报,2007,35(10):1939-1943. 被引量:52
  • 3米德伶,冯鹏,魏彪,黎蕾蕾,潘英俊.非下抽样抗混叠Contourlet变换及其自适应阈值去噪[J].光电子.激光,2009,20(12):1667-1670. 被引量:3
  • 4贾建,焦李成,魏玲.基于概率模型的非下采样Contourlet变换图像去噪[J].西北大学学报(自然科学版),2009,39(1):13-18. 被引量:4
  • 5张新生,高新波,王颖,张士杰.乳腺X线图像的增强与噪声抑制研究[J].红外与毫米波学报,2010,29(1):27-31. 被引量:3
  • 6P Perona, J Malik. Scale space and edge detection using anisotrop- ic diffusion[J]. 1EEE Transactions on Pattern Analysis and Ma- chine Intelligence, 1990,12 ( 7 ) :629 - 639.
  • 7F Catte, et al. Image selective smoothing and edge detection by nonlinear diffusion[ J]. SIMA J. Numer. Anal, 1992,29:182 - 193.
  • 8G Sapiro. Vector (self) snakes: a geometric framework for color, texture and multiscale image segmentation[ J]. Proc of IEEE In- ternational Conference on Image Processing, Lausanne, Switzer- land, 1996, ( 1 ) :817 - 820.
  • 9M J Black, et al, Robust anisotropic diffusion [ J ]. IEEE Trans- actions on Image Processing, 1998,7 (3) :421 -432.
  • 10J Davis, M Keek. A two - stage approach to person detection in thermal imagery[J]. IEEE OTCBVS WS Series Bench: In Proc. Workshop on Applications of Computer Vision, 2005.

二级参考文献49

  • 1焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 2PORTILLA J, STRELA V, WAINWRIGHT M, et al. Image denoising using scale mixtures of gaussians in the wavelet domain [ J ]. IEEE Transactions on Image Processing. 2003,12( 11 ) : 1338-1351.
  • 3SENDUR L, SELESNICK I W. Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency [ J ]. IEEE Trans Signal Proc, 2002,50 ( 11 ) : 2 744-2 756.
  • 4CHARLES K, JEROME B. Local adaptivity to variable smoothness for exemplar-based image denoising and representation[J]. Research Report INRIA, 5624,2005.
  • 5GHAZEL M, FREEMAN G H, VRSCAY E R. Fractal image denoising[ J ]. IEEE Trans Image Processing,2003, 12(12) : 1560-1578.
  • 6KERVRANN C. An adaptive window approach for image smoothing and structures preserving [ J ]. Proc Eur Conf Comp Vis ( ECCV'04 ) , Prague, Czech Republic, 2004, 3023 : 132-144.
  • 7ROTH S, BLACK M J. Fields of experts : a framework for learning image priors with applications [ J ]. Proc IEEE Conf on Comp Vis Patt Recog ( CVPR'05 ), 2005,2 : 860- 867.
  • 8MARIO A T, ROBERT D N. Wavelet-Based image estimation : An empirical bayes approach using jeffreys'noninformative prior [ J ]. IEEE Trans Image Processing, 2001,10(9) :1 322-1 331.
  • 9FAN Guo-liang, XIA Xiang-Gen. Image Denoising using local contextual hidden markov model in the wavelet domain [ J ]. IEEE Signal Processing Letters, 2001,8 ( 5 ) : 125-128.
  • 10BARASH D. A fundamental relationship between bilateral filtering, adaptive smoothing and the nonlinear diffusion equation[J]. IEEE Trans Part Anal Mach Intell, 2002,24 ( 6 ):844 -847.

共引文献57

同被引文献32

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部