期刊文献+

利用多帧图像分布特性的图像重构算法研究

Research of Image Restoration Based on Multi-Frame Image Distribution Characteristics
下载PDF
导出
摘要 研究图像恢复高分辨率图像的问题。由于图像存在锐化和冗余信息而影响了矢量效果,针对以往用反卷积或者单幅图像进行图像恢复重构方法结果不够理想的缺陷,提出了一种利用多幅图像进行图像重构的方法。算法核心思想是利用多幅相关图像进行训练,从而得到某些观测的分布特性,从而对图像进行恢复。首先,定义了一个基于图像小块的马尔科夫随机场分布模型,并由此定义了隐含节点到观测之间的势能函数和隐含节点之间的势能函数;然后通过选用一组训练图像,计算隐含节点到观测之间的混合高斯分布模型,并利用相邻节点所对应的小块之间相邻边界的相关度来计算势能函数所对应的值。最后利用置信传播的方法计算整幅图像上最优的恢复结果。仿真结果显示提出的方法较传统的反卷积方法和插值方法具有更优的恢复结果,能很好的逼近原始的真实图像。 In this paper, we presented a novel method for image restoration where multiple images were used to restore the high resolution image. Firstly, we defined a Markov random field on the low resolution image where two t potential functions were also defined. In the MRF, each node corresponded to a patch in the low resolution image. The first potential function represented the compatibility between hidden node and observations and the second potential function shown the relations between the neighboring hidden nodes. We trained the MRF using a bunch of high resolution images. The Gaussian mixture model over hidden node and observation was estimated based on training images and the similarities between neighboring nodes were calculated according to the edges shared by neighboring nodes. The experiments show that our method can provide better performance of restoration than reverse convolution method and interpolation method.
作者 俞淑燕
出处 《计算机仿真》 CSCD 北大核心 2012年第2期285-287,391,共4页 Computer Simulation
关键词 图像恢复 高分辨率 高期混合模型 Restoration High resolution GMM
  • 相关文献

参考文献7

二级参考文献34

  • 1[1]S kuttikkad,R Chellappa.Building Wide-area 2D Site Models from Single and Multipass Single Polarization SAR Data [A].Proc.SPIE on Algorithms for Synthetic Aperture Radar Imagery Ⅲ [C],Orlando,FL,1996:34-44.
  • 2[2]Ying Wang,Qinfen Zhang.Recognition of roads and bridges in SAR image [J].Pattern Recognition,1998,31 (7) :953-962.
  • 3[3]G B Goldstein.False alarm regulation in log normal and Weibull clutter[J].IEEE Transactions on Aerospace and Electronic Systems,1973,9(1):84-92.
  • 4[4]A M Waxman,et al.Neural processing of SAR image imagery for enhanced target detection [A].Proc.SPIE on Algorithms for Synthetic Aperture Radar Imagery Ⅱ [C],Europto Conf.,Taormina,Italy,1995,2487:201-210.
  • 5[5]L M Novak,M C Burl.Optional speckle roduction in polarimetric SAR imagery [J].IEEE Transactions on Aerospace and Electronic Systems,1990,26(1) :293-305.
  • 6[6]S Grossberg,E Mingollar.Neural dynamics of surface perception:boundary webs,illuminants,and shape from shading [J],CVGlP,1992,37(1):116-165.
  • 7[7]S kuttikkad,R Chellappa.Non-Ganssian CFAR techniques for target detection in high resolution SAR images [A].Proc.IEEE intl.Conf.on Image Processing,November 1994:910-914.
  • 8[10]D Ben-Tzvi,V F Leavers,M B Sandler.A dynamic combinational hough transform [A].Proc.5th Int.Conf.Image Anal.,1990:152-159.
  • 9[11]S kutfikkad,R Chellappa.Statistical modeling and analysis of high-resolution synthetic aperture radar images [J].Statistics and Computing,2000,(10):133-145.
  • 10Geman S,Geman D.Stochastic Relaxation,Gibbs Distributions,and the Bayesian Restoration of Images[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,1984,6(6):721-741.

共引文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部