期刊文献+

基于后效时间长度的股票价格预测 被引量:5

Stock-Price Forecasting Based on Length of Timeliness
下载PDF
导出
摘要 研究股票价格准确预测问题,针对股票走势预测受政治经济变化等多种因素的影响,具有较强的时变性和非线性特性。传统方法多为线性系统的预测方法,不能有效提高预测精度。为准确确定股票走势后效的时间长度,提高预测精度,根据地统计学与支持向量机提出了一种新的股票价格预测方法。先对数据进行平稳化处理并以地统计学分析股票价格数据的结构性,确定后效时间长度,根据后效时间长度确定各样本的拓阶次数,并对数据进行主成分分析,消除各描述特征携带的噪音。最后采用非线性支持向量机对得到的主成分构建模型并预测。以深发展A股与上证A股两个数据集进行仿真,预测精度均明显高于参比模型。仿真结果表明,新方法能准确预测股价走势,且稳定性好,为股价预测领域提供了有效的手段。 The stock price trend prediction is a typical time series with a strong time -varying, and the existing methods have the defect of low prediction accuracy. Effectively determining the length of timeliness is the key issue to improve the prediction accuracy. To improve the prediction accuracy, a new method of stock - price forecasting was proposed based on support vector machines and geostatistics. Firstly, the time series were stabihzed and the structure of the stock prices was analyze. Secondly, the order of data sets was identified based on the length of timeliness. Thirdly, noise information of variables was eliminated by principal component analysis. Lastly, nonlinear model was established by support vector machine. The simulation experiments were based on two actual stock price data sets and the new model has the highest prediction accuracy among the all reference models. The simulation results show that new method can accurately predicts the stock prices and has good application prospects in stock price forecasting.
作者 杨震
出处 《计算机仿真》 CSCD 北大核心 2012年第2期378-381,共4页 Computer Simulation
关键词 股票预测 支持向量机 地统计学 主成分分析 Stock - price forecasting Support vector machine (SVM) Geostatistics Principal component analysis (PCA)
  • 相关文献

参考文献5

二级参考文献26

  • 1王咏,申瑞民.运用模糊集挖掘数量属性数据的关联规则[J].计算机仿真,2004,21(8):129-131. 被引量:5
  • 2王磊,谭跃进,黄金才,张坚.基于聚类的快速时域关联规则发现算法[J].计算机仿真,2005,22(7):36-39. 被引量:5
  • 3叶德谦,金大兵,杨樱.基于强化学习的股票预测系统的研究与设计[J].微计算机信息,2006,22(02X):149-151. 被引量:4
  • 4R Agrawal, T Imielinski, A Swami. Mining association rules between sets of items in large databases [ C ]. Proc. of the ACM - SIGMOD 1993 Int'l Conference on Management of Data, Washington D. C. , May 1993.
  • 5M J Zaki, S Parthasarathy, M Ogihara and W Li. New algorithms for fast discovery of association rules[ C]. In Proc. of the 3rd Int'l Conf. on KDD and Data Mining( KDD'97), Newport Beach, California, August 1997.
  • 6Jia Hart,Mieheline Kamber.数据挖掘概念与技术(影印版)[M].北京:高等教育出版社,2001.
  • 7Kimoto T,et al.Stock market prediction system with modular neural networks,Proc[C] //International Joint Conference on Neural Networks,San Diego,1990,1:16.
  • 8Cheng W,Wanger L,Lin C H.Forecasting the 30-year US treasury bond with a system of neural networks[J].Journal of Computational Intelligence in Finance,1996,(4):10-16.
  • 9Sharda R,Patil R B.A connectionist approach to time series prediction:an empirical test[M].In:Trippi,RR,Turban,E,(Eds.),Neural Networks in Finance and Investing,Chicago:Probus Publishing Co.,1994:45-164.
  • 10Muller K R,et al.Using support vector machines for time series prediction[J].In:B.Scholkopf,C.J.C.Burges,A.J.Smola(Eds.),Advances in Kernel Methods-Support Vector Learning,MIT Press,Cambridge,MA,1999:243-254.

共引文献47

同被引文献31

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部