摘要
研究无轴承同步磁阻电机稳定性控制问题,由于无轴承同步磁阻电机是一个强耦合的非线性系统,为实现负载条件下的稳定悬浮运行,需解除电机转矩和径向悬浮力等多变量之间的耦合关系。针对前馈补偿解耦的缺陷,给出了无轴承同步磁阻电机包含转矩控制和悬浮力控制的统一数学模型,证明电机逆系统存在,设计了一种通过非线性状态反馈的逆系统解耦控制方案,将复杂的无轴承同步磁阻电机系统解耦成两个转子径向位置二阶积分子系统和一个转速一阶积分子系统,并用PI和PID调节器分别对转子位置与转速进行综合设计。运用MATLAB软件对电机控制系统进行仿真。仿真结果证明,解耦控制方案的有效性,为电机系统优化设计提供了保证。
Bearingless synchronous reluctance motor is a strongly coupled and nonlinear system. In order to realize the suspension operation under the load, the couplings between the torque and the radial levitation forces should be canceled. The whole mathematical model of the motor was given, including torque control and levitation forces control, and the reversibility of the motor's inverse system was proved, so the inverse decoupling strategy was designed using non - linear state feedback, which decoupled the complex motor system into two second order integral subsystems and one first order integral subsystem, named the rotor radial position subsystems and speed subsystem. These subsystems were separately synthesized with PI and PID controller. Modeling and simulation of the control system were studied with MATLAB, and simulation results verify that the proposed control scheme has good decoupling effectiveness.
出处
《计算机仿真》
CSCD
北大核心
2012年第2期416-419,共4页
Computer Simulation
基金
南京信息职业技术学院重点科研项目(YKJ10-006)
关键词
无轴承同步磁阻电机
逆系统
解耦控制
Bearingless synchronous reluctance motor
Inverse system
Decoupling control