期刊文献+

主元分析和重构贡献在变压器故障检测与诊断中的应用 被引量:3

Appling Principal Component Analysis and Reconstruction-based Contribution to Fault Detection and Diagnosis of Transformer
下载PDF
导出
摘要 针对常规DGA诊断方法对故障数据不敏感和诊断能力不足等问题,提出了基于主元分析和重构贡献的变压器故障检测与诊断方法。该方法在建立PCA模型后,基于故障重构的思想,定义重构贡献统计量并应用于变压器故障检测,分析了重构贡献法的故障诊断性能并利用重构贡献法进行诊断。实例研究结果表明:该方法的检测正确率超过95%且对检测DGA含量小的故障有一定的效果,同时,也验证了重构贡献法故障诊断的有效性。 In our opinion,dissolved gas analysis(DGA) is not sensitive to fault data and insufficient for diagnosis.Therefore we propose a new method for diagnosing the faults of a transformer with the principal component analysis(PCA) and the reconstruction-based contribution(RBC).After the PCA model is built,we use the idea of fault reconstruction to define the RBC statistical indices and apply them to the diagnosis of the faults of a transformer.We analyze the performance of the fault diagnosis method that uses the RBC and perform the fault diagnosis.The example study results show that our fault diagnosis method has the effective fault detection rate of 95% and is somewhat effective for detecting the fault whose DGA content is small and that the fault diagnosis method that uses the RBC is also effective for the diagnosis of faults of a transformer.
出处 《机械科学与技术》 CSCD 北大核心 2012年第2期206-212,共7页 Mechanical Science and Technology for Aerospace Engineering
基金 江西省工业科技重点项目 基于专家系统的大型企业动力厂安全监控和节能运行系统的研发(2007BG27300)资助
关键词 主元分析 变压器 故障检测 故障诊断 重构贡献 贡献图 principal component analysis; transformer; fault detection; fault diagnosis; reconstruction-based contribution; fault reconstruction;
  • 相关文献

参考文献16

  • 1中华人民共和国电力部.DL/T722-2000变压器油中溶解气体分析和判断导则[S].北京:中国电力出版社,2000.
  • 2高文胜,严璋,谈克雄.基于油中溶解气体分析的电力变压器绝缘故障诊断方法[J].电工电能新技术,2000,19(1):22-26. 被引量:42
  • 3赵立杰,柴天佑,王纲.多元统计性能监视和故障诊断技术研究进展[J].信息与控制,2004,33(2):197-201. 被引量:18
  • 4MacGregor J F,Kourti T.Statistical process control of multivari-ate processes[J].Control Engineering Practice,1995,3(3).
  • 5Jackson J E,Mudholkar G S.Control procedures for residuals as-sociated with principal component analysis[J].Technometrics,1979,21(3):341~349.
  • 6Cherry G,Qin S J.Multiblock principal component analysisbased on a combined index for semiconductor fault detection anddiagnosis[J].Institute for Electrical and Electronic Engi-neers Transactions on Semiconductor Manufacturing,2006,19(2).
  • 7Westerhuis J A,Gurden S P,Smilde A K.Generalized contribu-tion plots in multivariate statistical process monitoring[J].Che-mometrics and Intelligent Laboratory Systems,2000,51.
  • 8Yoon S,MacGregor J F.Fault diagnosis with multivariate statisti-cal models,part I:Using steady state fault signatures[J].Jour-nal of Process Control,2001,11:387~400.
  • 9Dunia R and Qin S J.A unified geometric approach to processand sensor fault identification and reconstruction:the unidimen-sional fault case[J].Computers and Chemistry Engineering,1998,22:927~943.
  • 10Dunia R,Qin S J.Subspace approach to multidimensional faultidentification and reconstruction[J].American Institute ofChemical Engineers Journal,1998,44:1813~1831.

二级参考文献102

共引文献137

同被引文献22

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部