期刊文献+

一种混合的非线性强化模型M-NH研究 被引量:1

Study in the Mixed Nonlinear Hardening(M-NH) Model for Multiaxial
下载PDF
导出
摘要 基于Lemaitre and Chaboche非线性随动强化和等向强化理论,提出了一种有效的背应力修正方法,采用Mises屈服准则,建立了复杂加载模式下非线性混合强化材料模型(M-NH)的弹塑性应力应变本构关系,采用高效的Backward Euler切向预测径向返回算法给出应力应变增量的计算,引入最小二乘法根据单轴拉伸实验数据点获得材料的硬化模型参数。为了计算背应力及弹塑性刚度矩阵开发了Fortran程序,编制了M-NH模型的实现代码。针对采用本模型获得的单轴拉伸应力应变曲线,分析了材料相关硬化参数对曲线变化趋势的影响。本模型及Chaboche1991、Basu&Voyiadjis强化模型分别与Chaboche的实验数据对比表明,基于M-NH获得的计算数据与实验结果更为接近。 Based on the nonlinear kinematic hardening model and isotropic hardening model proposed by Lemaitre and Chaboche, a new term is added in the plastic strain dependent terms. The constitutive equations of the mixed nonlinear hardening (M-NH) model are derived at the complicated loading using Mises' yield function. The effi- cient implicit backward Euler scheme with radial return is used to obtain strain and stress increments. The least- square error approach is adopted to get material parameters using a finite set of points in the uniaxial stress-strain curve. M-NH model is fulfilled with Fortran codes in order to get backstress and elasto-plastic stiffness matrix. The behavior of the present model constants is analyzed against different conditions. Those individual importance and contribution to stress-strain curve is highlighted. The comparisons between the present results and that of experi- ment by Chaboche show that it is in better agreement with those results of Chaboche 1991 and Basu & Voyiadiis.
出处 《机械科学与技术》 CSCD 北大核心 2012年第2期306-309,316,共5页 Mechanical Science and Technology for Aerospace Engineering
基金 国家自然科学基金项目(51005137) 中国博士后科学基金项目(20100471541) 山东省自然科学基金项目(ZR2010EQ025) 材料成形与模具技术国家重点实验室开放基金项目(2010-P16)资助
关键词 随动强化 本构关系 径向返回算法 kinematic hardening constitutive equation radial return algorithm
  • 相关文献

参考文献12

  • 1Prager W.A new method to analyzing stresses and strains inwork-hardening plastic solids[J].ASME Journal of AppliedMechanics,1956,78.
  • 2Zeigler H.A modification of Prager's hardening rule[J].Quar-terly of Applied Mathematics,1959,17:55~65.
  • 3Mroz Z.On the description of anisotropic work hardening[J].Journal of Mechanical Physics and Solids,1967,15:163~175.
  • 4Dafalias Y F,Popov E P.Plastic internal variables formulism ofcyclic plasticity[J].Journal of Applied Mechanics,1976,43.
  • 5Armstrong P J,Frederick C O.A mathematical representation ofthe multiaxial Bauschinger effect[J].Materials at High Tem-peratures,2007,24(1).
  • 6Chaboche J L.Constitutive equations for cyclic plasticity and cy-clic viscoplasticity[J].International Journal of Plasticity,1989,5:247~302.
  • 7Lemaitre J,Chaboche J L.Mechanics of Solid Materials[D].Cambridge University Press,1990.
  • 8Wang H,Barkley M E.Strain space formulation of the Armstrong-Frederick family of plasticity models[J].ASME Journal of En-gineering Materials and Technology,1998,12(3):230~235.
  • 9Geng L,Wagoner R H.Springback Analysis with a ModifiedNonlinear Hardening Model[R].SAE2000,01041-01-0768.
  • 10Phillips A,Tang J L,Ricciuti M.Some new observations onyield surfaces[J].Acta Mechanica,1974,20:23~39.

同被引文献7

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部