期刊文献+

基于正交模型辨识辅助的欠采样数字预失真方法 被引量:2

Under-sampling digital predistortion method based on auxiliary orthogonal model identification
下载PDF
导出
摘要 针对数字预失真技术在宽带通信系统中的具体实现受到模数转换器采样率制约的问题,提出一种新的欠采样数字预失真方法。首先在欠采样速率下对功放的正交模型进行离线辨识,接着根据一定的算法得到Nyquist采样率下的简化预失真器模型,并进行在线的自适应直接学习。该方法具有预失真器模型构造简单、欠采样实现高效的特点。理论分析和仿真结果表明,该方法有效降低了对模数转换器的采样率要求,优化了简化预失真器模型的线性化条件,更好地抑制了功放非线性引起的带内失真和频谱再生。 In broad-band communication systems, the practical implementation of digital predistortion suffers from the sampling-rate limitation of analog-to-digital converters. In order to solve this problem, an under-sampling digital predistortion method is proposed. First, the power amplifier 's orthogonal model parameters are extracted by offline identification with under-sampling rate. Second, the simplified predistorter with Nyquist rate is obtained according to a certain algorithm. Finally, an adaptive direct-learning algorithm is operated online. The proposed method has the characteristics of simple predistorter model structure and efficient under-sampling realization. Theoretical analysis and simulation results demonstrate that the method reduces the sampling-rate requirement of the analog-to-digital converter effectively and optimizes the linearization condition of the simplified predistorter model, thus it can greatly suppress the inand distortion and spectrum regrowth caused by the nonlinearities of the t^ower amplifier.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2012年第2期369-374,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(61102135) 中央高校基本科研业务费专项资金(2010121063) 福建省科技重大专项(2009HZ0003-1)资助课题
关键词 宽带通信系统 数字预失真 非线性系统辨识 正交模型 broad-band communication system digital predistortion nonlinear system identification orthogonal model
  • 相关文献

参考文献1

二级参考文献8

  • 1陈凯亚,王敏锡.Wiener功率放大器的分离预失真方法[J].通信学报,2005,26(9):30-34. 被引量:9
  • 2Wang T,Llow J.Compensation of nonlinear distortions with memory effect in OFDM transmitters[C] // IEEE Global Telecommunications Conference,2004:2398-2403.
  • 3Vuolevi J,Manninen J,Rahkonen M.Measurement with characterizing memory effects in RF power amplifiers[J].IEEE Trans.on Microwave Theory Technology,2001,49(8):257-260.
  • 4Wright A S,Durtler W G.Experimental performance of an adaptive digital linearized power amplifier[J].IEEE MTT-S International Microwave Symposium Digest,1992,41(4):395-400.
  • 5Jardin P,Baudoin G.Filter lookup table method for power amplifier linearization[J].IEEE Trans.on Vehicular Technology,2007,56(3):1076-1087.
  • 6Saleh A M.Frequency independent and frequency dependent nonlinear models of TWT amplifiers[J].IEEE Trans.on Communications,1981,29(11):1715-1720.
  • 7Cavers J K.Optimum table spacing in predistorting amplifier linearizers[J].IEEE Trans.on Vehicular Technology,1999,48(5):1699-1705.
  • 8Li C C,Krogmeier J V.A look-up table with amplitude scaling technique for amplifier linearization[C] // Proc.of IEEE Singapore International Conference Communication System,2006:1-5.

共引文献5

同被引文献23

  • 1王勇,向新,易克初.基于非迭代算法和非直接学习结构的查询表TWTA预失真器[J].通信学报,2006,27(9):106-109. 被引量:6
  • 2Vuolevi J H K,Rahkonen T,Manninen J P A.Measurement technique for characterizing memory effects in RF power amplifiers[J].IEEE Transactions on Microwave Theory Techniques,2001,49(12):1383-1389.
  • 3Ding L,Zhou G T,Morgan D R,et al.A robust digital baseband predistorter constructed using memory polynomials[J].IEEE Transactions on Communications,2004,52(1):159-165.
  • 4Ding L,Zhou G T.Effects of even-order nonlinear terms on power amplifier modeling and predistortion linearization[J].IEEE Transactions on Vehicular Technology,2004,53(1):156-162.
  • 5Morgan D,Ma Z,Zierdt M,et al.A generalized memory polynomial model for digital predistortion of RF power amplifiers[J].IEEE Transactions on Signal Processing,2006,54(10):3852-3860.
  • 6Guan L,Zhu A.Optimized low-complexity implementation of least squares based model extraction for digital predistortion of RF power amplifiers[J].IEEE Transactions on Microwave Theory Techniques,2012,60(3):594-603.
  • 7Donoho D L.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
  • 8Candes E,Romberg J,Tao T.Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information Theory,2006,52(2):489-509.
  • 9Candes E.Compressive sampling[C]//Proceedings of Congress of Mathematics,2006,3:1433-1452.
  • 10Baraniuk R G.Compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-124.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部