期刊文献+

结合FDA与NMF的高光谱数据解混方法

Combining Fisher discriminant analysis with nonnegative matrix factorization by perspectral data unmixing
下载PDF
导出
摘要 高光谱图像解混是遥感图像处理的重要技术之一.利用非负矩阵分解(NMF)进行高光谱图像解混是近年来发展起来的一种方法.这种解混方法假设光谱具有稳定的光谱特性;但实际上光谱经常是多变的,这个现象影响着解混的精度.为了减小这一影响,首先利用Fisher判别分析(FDA)对高光谱数据进行线性变换,而后利用变换后的高光谱数据提出了一种FDA与NMF相结合的高光谱数据解混方法.实验表明新方法能够有效地提高解混精度与效率. Hyperspectral unmixing is one of the most important techniques in remotely sensed image processing. Nonnegative matrix factorization(NMF) based hyper spectral unmixing has been developed in recent years. NMF based spectral mixture analysis assumes that the spectrum must have a constant spectral signature. However, spectral variability always exists in practical situations, which reduces the accuracy of mixed pixel decomposition. In order to solve the problem, the spectral data were translated by Fisher discriminant analysis (FDA), and then using the transformed hyperspectral data a new hyper spectral unmixing method is proposed by combining FDA with NMF. Experiments show that the proposed method can improve both accuracy and efficiency of mixed pixels decomposition.
出处 《应用科技》 CAS 2011年第12期20-24,共5页 Applied Science and Technology
基金 国家自然科学基金资助项目(60802059) 教育部博士点新教师基金资助项目(200802171003)
关键词 高光谱 光谱解混 FISHER判别分析 非负矩阵分解 hyperspectral spectralunmixins Fisher discriminant analysis(FDA) nonnegative matrix factorization(NMF)
  • 相关文献

参考文献12

  • 1ADAMS J B, SMITH M O, JOHNSON P E. Spectral mixture modeling:a new analysis of rock and soil types at the Virking Lander I site[J]. Journal of Geophysical Research Atmospheres, 1986, 91 ( B8 ): 8098-8112.
  • 2ATKINSON P M, CUTLER M E J, LEWIS H. Mapping sub-pixel proportional land cover with AVHRR imagery[J]. International Journal of Remote Sensing, 1997, 18 ( 4 ) : 917-935.
  • 3MARSH S E, SUITZER P, KOWALIKW S, et al. Resolving the percentage of component terrains within single resolution elements[J]. Photogrammetric Engineering and Remote Sensing, 1980, 46 ( 8 ) : 1079-1086.
  • 4LEE D D, SEUNG H S. Learning the parts of objects by nonnegative matrix factorization[J]. Nature, 1999 ( 401 ) : 788-791.
  • 5JIN Jing, WANG Bing. A novel approach based on Fisher discriminant null space for Decomposition of mixed pixels in hyperspectral Imagery[J]. IEEE Trans Geosciencei Remote Sensing, 2010, 7 ( 4 ) : 699-703.
  • 6LIU Xuesong, XIA Wei, WANG Bing. An approach based on constrained nonnegative matrix factorization to unmix hyperspectral data[J]. IEEE Transactions Geoscience Remote Sensing, 2011, 49 ( 2 ) :757-772.
  • 7HOYER P O. Non-negative sparse coding[C] ∥ Proc 12th IEEE Workshop NNSP. Martigny, Switzerland, 2002.557-565.
  • 8HOYER P O. Non-negative matrix factorization with sparseness constraints[J]. Mach Learn Res,2004 ( 5 ) : 1457-1469.
  • 9孙即祥.现代模式识别[M].长沙:国防科技大学出版社,2001.
  • 10PLAZA A, MARTINEZ P, PEREZ R,vet al. A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data[J]. IEEE Transations Geoscience Remote Sensing, 2004, 42 ( 3 ) : 650-663.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部