期刊文献+

数值模拟二维间隙表面等离子波导传输特性 被引量:4

Numerical Simulation of Transmission Characters of Two-dimensional Gap Plasmonic Waveguide
下载PDF
导出
摘要 利用表面等离子激元的新颖特性,设计了二维间隙表面等离子波导.以这种结构为基础通过变形和组合形成90°直角弯曲波导、T型光功率分配器和光开光,采用时域有限差分法研究了它们的传输特性.结果表明:不同于介质光波导的弯曲损耗来自于辐射泄漏,90°直角弯曲间隙表面等离子波导的能量损耗主要来自于金属中的欧姆热损耗.在间隙达到40nm以上后,当直行段的长度适当时,弯曲段的透射率较相同长度的直波导的透射率要大.T型光功率分配器在两输出波导的间隙宽度比达到0.6及以上时,不同于传统介质波导的分光原则,能量主要沿等效折射率较小的输出臂流出.当两输入光的相位反相时,T型光开关处于输出截止的状态,当两输入光的相位同相时,T型光开关处于输出导通的状态.所有波导间隙均小于衍射极限,实现了超衍射极限传播,可用于未来了超大规模集成光路中. Two-dimensional gap plasmonic waveguide employing surface plasmon polaritons is proposed.Transmission characters of 90 degrees sharp bend waveguide,T-shaped splitter and switch based on gap plasmonic waveguide are numerical simulated with finite-difference time-domain method.It is shown that the energy loss of 90 degrees sharp bend waveguide is ohmic losses which are different to radiation losses of dielectric optical waveguide.When the gap width is larger than 40 nm,the transmission of bend waveguide is larger than straight waveguide with the same length.In the T-shaped splitter,when the gap width ratio of two output waveguides is larger than 0.6,the output energy is mainly assigned to the output waveguide which effective index is smaller.The result is different from dielectric optical splitter.The T-shaped switch is off with two input light out of phase and is on with two input light in phase.The plasmonic modes in the above devices beyond the diffraction limit and can be employed in super-large-scale optical integrated circuit.
出处 《光子学报》 EI CAS CSCD 北大核心 2011年第12期1793-1798,共6页 Acta Photonica Sinica
基金 湖北省教育厅科研项目(No.B20111304)资助
关键词 集成光学 表面等离子波导 时域有限差分法 传输特性 Integrated optics Plasmonic waveguide Finite-difference time-domain Transmission characters
  • 相关文献

参考文献20

  • 1PRASAD P N. Nanophotonies[M]. Hoboken: John Wiley Sons, 2004: 11. BARNES W L, DEREUX AI EBBESEN T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424 (8) : 824-830.
  • 2TANAKA K, TANAKA M. Simulations of nanometric optical circuits based on surface Plasmon polariton gap waveguide[J]. Applied Physics Letters, 2003, 81(8) : 1158- 1160.
  • 3DIONNE J A, SWEATLOCK L A, ATWATER H A, et al. Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization[J]. Physical Review B, 2006, 73(3): 035407 1-035407-9.
  • 4KANG Z W, WANG G P. Coupled metal gap waveguides as plasmonic wavelength sorters[J].Optics Express, 2008, 16 (11): 7680-7685.
  • 5WANG B, WANG G P. Surface plasmon polariton propagation in nanoscale metal gap waveguides [J].Optics Letters, 2004, 29(17): 1992- 1994.
  • 6KRASAVIN A V, ZAYATS A V. Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides[J].Applied Physics Letters, 2007, 90 (21) : 211101-1-211101-3.
  • 7BOZHEVOLNYI S I, VOLKOV V S, DEVAUX E, et al. Channel plasmon-polariton guiding by sub wavelength metal grooves[J]. Physical Review Letters, 2005, 95(4) : 046802- 1-046802-4.
  • 8CHEN P X, LIANG R S, HUANG Q D, et al. Plasmonic filters and optical directional couplers based on wide metal- insulator-metal structure[J].Optics Express, 2011, 19 (8) : 7633-7639.
  • 9YUN B F, HU G H, CUI Y P. Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal -insulator-metal waveguide [ J ]. Journal of Physics DI Applied Physics, 2010, 43(38) ; 385102-1-385102-8,.
  • 10HU F F, YI H X, ZHOU Z P. Band-pass plasmonlc slot filter with band selection and spectrally splitting capabilities [J]. Optics Express, 2011, 19(6): 4848-4855.

同被引文献62

  • 1张羊羊,朱方明,沈林放,高振.介质填充浅槽周期结构表面上的太赫兹表面等离子体激元[J].光子学报,2012,41(4):389-393. 被引量:10
  • 2WANG Chun-gang, MA Zhan-fang, WANG Ting-ting, et al. Synthesis, assembly, and biofunctionalizaIion of silica-coated gold nanorods for colorimetric biosensing [ J ]. Advanced FunetionalMaterials, 2006, 16( 13): 1673-1678.
  • 3XU G, TAZAWA M, JIN P, et al. Wavelength tuning of surface plasmon resonance using dielectric layers on silver island films[J]. Applied Physics Letters, 2003, 82(22): 3811-3813.
  • 4WEIMER W A, DYER M J. Tunable surface plasmon resonance silver films[J]. Applied Physics Letters, 2001, 79 (19): 3164-3166.
  • 5OATES T W H, NODA S. Thickness gradient dependent Raman enhancement in silver island films [ J ]. Applied Physics Letters, 2009, 94(5): 053106.
  • 6YONZON C R, STUART D A, ZHANG X, etal. Towards advanced chemical and biological nanosensors-an overview [J]. Tulanta, 2005, 67(3): 438-448.
  • 7WANG Chun-xu, RUAN Wei-dong, JI Nan, et al. Preparation of nanoscale Ag semishell array with tunable interparticle distance and its application in surface enhanced Raman scattering[J]. Journal of Physical Chemistry C, 2010, 114(7): 2886-2290.
  • 8LAL S, C-RADY N K, KUNDU J, et al. Tailoring plasmonic substrates for surface enhanced spectroscopies[J]. Chemical Society Reviews, 2008, 37(5) : 898-911.
  • 9CORTIE M, FORD M A. Plasmon-induced current loop in gold semi-shells [ J ]. Nanotechnology, 2007, 18 ( 23 ) : 235704.
  • 10JAINPK, HUANGW, EI-SAYEDM A. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation[J]. Nano Letters, 2007, 7(7): 2080-2088.

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部