期刊文献+

亏秩最小二乘问题的最优AOR方法(英文)

Optimal AOR for Rank Deficient Least Squares Problem
下载PDF
导出
摘要 主要研究了求解亏秩线性最小二乘问题的AOR方法的最优参数、渐近半收敛因子及其明晰的表达形式.并给出了两个数值例子阐明结论. This paper studied the optimal parameters and asymptotical semiconvergence factor of AOR methods for rank deficient linear least squares problem and presented the explicit expressions of these factors. Finally, two numerical examples are given to illustrate our results.
作者 谈雪媛
出处 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2011年第4期1-8,共8页 Journal of Nanjing Normal University(Natural Science Edition)
基金 Supported by the National Natural Science Foundation of China(10971102) the Natural Science Foundation of Jiangsu Province of China(BK2009398) the Foundation for the Authors of the National Excellent Doctoral Thesis Award of China(200720) Jiangsu Innovation Fund for Doctor of Science(CX07B-027z)
关键词 AOR方法 最优参数 2-循环 渐近半收敛因子 亏秩线性最小二乘问题 AOR methods, optimal parameters, 2-cyclic, asymptotical semiconvergence factor, rank deficient linearleast squares problem
  • 相关文献

参考文献10

  • 1Chen Y T. Iterative methods for linear squares problems[ D]. Ontario: University of Waterloo, 1975.
  • 2Niethammer W, J de Pillis, Varga R S. Convergence of block iterative methods applied to sparse least squares problems [ J ]. Linear Algebra Appl, 1984,58:327-324.
  • 3Markham T L, Neumann M, Ptemmons R J. Convergence of a direct-iterative method for large-scale least squares problems [ J]. Linear Algebra Appl, 1985,69 : 155-167.
  • 4Saridakis Y G. An algorithmic approach for the analysis of extrapolated iterative schemes applied to least-squares problems [ J]. J Comput Appl Math, 1988,24:209-225.
  • 5Miller V A, Neumann M. Successive overrelaxation methods for solving the rank deficient least squares problem [ J ]. Linear Algebra Appl, 1987,88/89:533-557.
  • 6Tian Hongjun. Accelarated overrelaxation methods for rank deficient linear systems [ J ]. Appl Math Comput, 2003,140:485- 499.
  • 7Tan Xueyuan, Song Yongzhong. Optimal parameters for 2-cyclic AOR [ J ]. Appl Math Comput, 2010,216:1 428-1 442.
  • 8Varga R S. Matrix herative Analysis [ M ]. 2nd ed. Berlin: Springer-Verlag, 2000.
  • 9Hadjidimos A. Successive overrelaxation and related methods[ J]. J Comput Appl Math, 2000,123:177-199.
  • 10Sisler M. Uber ein Zweiparametrigen Iterationsverfahrens [ J]. Apl Mat, 1973 (18):325-332.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部