期刊文献+

某类本原不可幂定号有向图的Local基

Local Base of a Primitive,Non-Powerful Signed Digraph
下载PDF
导出
摘要 文章研究了一类含有三个圈的n阶本原不可幂定号有向图,根据图形的特点,分析其中是否含有所定义的SSSD途径对,并综合运用异圈对,SSSD途径对及Frobenius数的相关理论,进而得出这类本原不可幂定号有向图的Local基. The local base of a primitive,non-powerful signed digraph with three cycles of order n is studied.With the analysis of whether there is a SSSD walks in the digraph and the characteristics of distinguished cycle pair and Frobenius,the local base of this kind of primitive non-powerful signed digraph are concluded.
机构地区 中北大学理学院
出处 《太原师范学院学报(自然科学版)》 2011年第4期11-13,31,共4页 Journal of Taiyuan Normal University:Natural Science Edition
基金 山西省自然科学基金资助项目(2008011009)
关键词 本原图 定号有向图 SSSD途径对 Local基 primitive digraph signed digraph SSSD walks Local base
  • 相关文献

参考文献5

  • 1You L H,Shao J Y,Shan HY. Bounds on the bases of irreducible generalized sign pattern matrices[J]. Linear Algebra Appl, 2007,427 : 285-300.
  • 2Shen J, Neufeld S. Local exponents of primitive digraphs[J]. Linear Algebra Appl. , 1998,268:117-129.
  • 3Gao YB,Shao YL,Shen J. Bounds on the local bases of primitive non-powerful nearly reducible sign patterns[J]. Linear Multil Algebra, 2009,57(2) : 205-215.
  • 4Ma HP. Bounds on the local bases of primitive,non-powerful, minimally strong signed digraphs[J]. Linear Algebra Appl, 2009,430:718-731.
  • 5Shao Jiayu. On the exponent of a primitive digraph[J]. Linear Algebra Appl, 1986,64:21-31.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部