期刊文献+

一类捕食与被捕食模型的行波解 被引量:2

A Class of Traveling Wave Front for the Predator-Prey Model
下载PDF
导出
摘要 考虑一类捕食与被捕食模型的行波解的存在性,通过构造上下解,利用单调迭代技术,得到了其行波解存在的充分条件. Traveling wave front for the predator-prey model are considered,existence of traveling wave front is obtained by constructing a pair of upper and lower solutions coupled with using monotone iterative technique.
作者 武红艳
出处 《太原师范学院学报(自然科学版)》 2011年第4期17-19,共3页 Journal of Taiyuan Normal University:Natural Science Edition
关键词 捕食与被捕食模型 行波解 上下解方法 单调迭代技术 predator-prey model traveling wave front upper and lower soltions monotone iterative technique
  • 相关文献

参考文献4

  • 1Wu J ,Zou X. Existence of traveling wave fronts in delayed reaction-diffusion systems via the monotone iteration method[J]. Proc. Amer. Math. Soc. ,1997,125:2 589-2 598.
  • 2Boumenir A, Minh N V. Perron theorem in the monotone iteration method fortraveling waves in delayed reaction-diffusion equations. [J]. J. Differential Equations, 2008,244 : 1 551-1 570.
  • 3Wu J,Zou X. Traveling wave fronts of reaction-diffusion systems with delay[J]. Dynamics Differential Equations, 2001,13: 651-687.
  • 4H uang J, Lu G, Ruan. Existence of traveling wave solutions in a diffusive predator-prey model[J]. J. Math. Biol, 2003 (4) : 132- 152.

同被引文献12

  • 1WU Jianhong, ZOU Xingfu. Existence of traveling wave fronts in delayed reaction-diffusion systems via the monotone iteration methodrJ']. Proc. Amer. Math. Soc, 1997,125:2589-2598.
  • 2WU Jianhong,ZOU Xingfu. Traveling wave fronts of reaction-diffusion stems with delay[J]. Dynamic Differential Equations, 2001,13:651-687.
  • 3MA Siwang. Traveling wave fronts for delayed reaction-diffusion systems via a fixed point Theorem[J]. J. Differentia[ Equa tions, 2001,171 : 294-314.
  • 4WANG Zaicheng,LI Wantong,RUAN Shigui. Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delayl-J']. J. Differential Equations,2007,238:153-200.
  • 5CHERN I Liang, Meiming. Stability of non-monotone critical traveling waves for reaction diffusion equations with time-delay [J]. J. Differential Equations,2015(3).
  • 6YAO Meiping,ZHAO Aimin,YAN J urang. Monotone method for first order functional differential equations with retardation and anticipation[J]. Nonlinear Analysis, 2009,71 : 4223-4230.
  • 7Wu Jianhong, Zou Xingfu. Traveling wave fronts of reaction-diffusion stems with delay [ J ]. Dynamic Differential Equations, 2001, 13 : 651 ~687.
  • 8Wu Jianhong, Zou Xingfu. Existence of traveling wave fronts in delayed reaction-diffusion systems via the monotone iteration method [J]. Proc.Amer.Math.Soc, 1997, 125:2589-2598.
  • 9Ma Siwang. Traveling wave fronts for delayed reaction-diffusion systems via a fixed point theorem [J ]. J. Differential Equations, 2001, 171:294-314.
  • 10Wang Zaicheng, Li Wantong, Ruan Shigui. Existence and stability of traveling wave fronts in reaction advection diffusion equations ~ith nonlocal delay [J ]. J. Differential Equations, 2007, 238:153-200.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部