期刊文献+

基于改进粒子群优化算法求解带时间窗的车辆路径问题研究 被引量:2

An Improved Particle Swarm Optimization Algorithm for Vehicle Routing Problem with Time Window
下载PDF
导出
摘要 针对粒子群优化算法易出现早熟收敛、陷入局部最优的问题,提出了在粒子群搜索解的过程中监控粒子健康度的方法,对健康度低的粒子进行交叉操作。该方法既保证了健康粒子继续搜索最优解,又有效地改变了非健康粒子的状态,提高了粒子群的寻优能力以及跳出局部最优解的能力。最后通过实验数据集验证了新算法,实验结果表明与标准粒子群算法相比新算法在探索潜在最优解、保持种群多样性方面具有良好的效果。 For the premature convergence which is easily falling into local optimum on the particle swarm optimization searching process,this paper proposed a crossover operation to the particle with low health degree.This method not only effectively improved the unhealthy particles and let them jump out of local optimum,but also ensured the healthy particles to continue searching for optimal solutions.Finally,the new algorithm is verified by the Benchmark problem.The experimental results show that the new algorithm proposed is competitive to solve vehicle routing problem with time window.
出处 《广西师范学院学报(自然科学版)》 2011年第4期98-102,共5页 Journal of Guangxi Teachers Education University(Natural Science Edition)
基金 广西自然科学基金(0991104)
关键词 带时间窗的车辆路径问题 粒子群算法 粒子健康度 vehicle routing problem with time window particle swarm optimization health degree of particle
  • 相关文献

参考文献6

  • 1DEB K, PRATAP A, AGARWAL S, MEYARIVAN T. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Trans Evol Comput 2002,6(2):182-97.
  • 2DONATI A, MONTEMANNI R, CASAGRANDE N, RIZZOLI A, GAMBARDELLA LM. Time dependent vehicle routing problem with a multi ant colony system[J ]. European Journal of Operational Research, 2008,185 (3) :74-91.
  • 3KENNEDY J, EBERHART R. Particle Swarm Optimization[C]. Proc Of IEEE International Conference on Neural Net- works. IS. 1.1: IEEE Press, 1995.
  • 4P S ANDREWS. "An Investigation into Mutation Operators for Particle Swarm Optimization," in Evolutionary Computa- tion, 2006[J]. CEC 2006. IEEE Congress on, 2006:1044-1051.
  • 5闭应洲,丁立新,李文敬.有导向交叉算子的研究[J].计算机工程与应用,2010,46(15):28-30. 被引量:3
  • 6ZIZLER E. Evolutionary algorithms for multiobjective optimization:Methods and application. Zurich:Ph D thesis[J]. Swiss Federal Institute of Technology, 1999.

二级参考文献6

  • 1闭应洲,丁立新,杨小雄.基于免疫学原理降低交叉算子破坏性的研究[J].计算机工程与应用,2007,43(18):42-44. 被引量:4
  • 2Eiben A E,Smith J E.Introduction to evolutionary computing[M]. Berlin Heidelberg : Springer-Verlag, 2003.
  • 3Hammad M,Conor R.A less destructive,context-aware crossover operator for GP[C]//Leeture Notes in Computer Science.Berlin/Heidelberg: Springer-Verlag, 2006,3905 : 36-48.
  • 4Goldberg D E.Design of innovation:Lessons from and for competent Genetic Algorithms[M].Boston,MA:Kluwer,2002.
  • 5Chen Y P.Extending the scalability of linkage Learning genetic algorithms:Theory and practice[D].University of Illinois at Urbana- Champaign, Urbana, IL, 2004.
  • 6Chen Y P,Yu T L,Sastry K,et al.A niques in genetic and evolutionary 2007014[R].2007. survey of linkage learning techalgorithms,IlliGAL Report No.

共引文献2

同被引文献16

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部