期刊文献+

拱形减振橡胶垫在荷载作用下的应力分析 被引量:1

The stress analysis of the arch rubber bearing in the action of load
下载PDF
导出
摘要 通过实验确定了橡胶材料的Mooney-Rivlin常数。以拱形减振橡胶垫为对象,建立了空间有限元模型。考虑材料非线性和几何非线性影响以及半球形空腔内的气体压力作用,用有限元法分析了这种减振橡胶垫的应力状态和极限承载力。结果表明,在正常使用下,减振橡胶垫在含半球区域的水平正应力沿着水平方向基本上呈波浪型的变化,沿竖向基本上呈线性分布;剪应力比正应力小一个数量级;无半球区域应力分布比较均匀,变化很小;拱形减振橡胶垫中的半球形空腔的半径R、半球间距L和橡胶垫厚度h对极限承载力均有一定的影响;当R=5.5 mm,L=3 mm,h=14 mm时,拱形橡胶减振垫的极限承载力为375 kN,与正常使用下的荷载之比为3∶1;极限状态时拱形橡胶减振垫的厚度约为原始厚度的一半。 Mooney-Rivlin constants of rubber materials were determined by the test.The space finite element model of the arch decouple rubber bearing was established.Taking material nonlinearity and geometry nonlinearity as well as the action of the air pressure in semisphere empty rooms into account,the stress distribution and ultimate load of the arch decouple rubber bearing with semisphere empty rooms were analyzed with the finite element method.It is shown from the calculation result that in the common use state,the normal stresses in the area with semisphere empty rooms change mainly at wavy rule along horizontal direction and linearly along vertical direction;the shear stress is an order of magnitude lower than the normal stress;the distribution of stresses in the area without semisphere empty rooms are much average and the stresses change very little.The semisphere radius R,space L between semispheres and thickness h of the arch decouple rubber bearing have some influence on the ultimate load.When R=5.5 mm,L=3 mm,h=14 mm,the ultimate load of each arch rubber bearing is 375 kN,which is three time of the load in the common use state.The thickness of the arch decouple rubber bearing in ultimate state is approximately half of the original thickness.
出处 《铁道科学与工程学报》 CAS CSCD 2011年第6期23-28,共6页 Journal of Railway Science and Engineering
基金 国家自然科学基金资助项目(50978058) 广东省自然科学基金资助项目(S2011010005037)
关键词 减振橡胶垫 超弹性材料 应力 顶面位移 极限承载力 the decouple rubber bearing super elastic materials stress top surface displacement ultimate load
  • 相关文献

参考文献6

二级参考文献9

  • 1Yeoh O H.Some forms of the strain energy for rubber[J].Rubber Chemical and Technology,1993,66(5):754~771.
  • 2Yeoh O H.Characterization of elastic properties of carbon blak filled rubber vulcanization[J].Rubber Chemical and Technology,1990,63(5):792~805.
  • 3Charlton D J,Yang J.A review of methods to characterize rubber elastic behavior for use in finite element analysis[J].Rubber Chemical and Technology,1994,67(3):481~503.
  • 4Farhad Tabaddor.Elastic stability of rubber products[J].Rubber Chemical and Technology,1987,60(5):957~965.
  • 5Gent A N.Engineer with Rubber-How to Design Rubber Components[M].2000.259~275.
  • 6Oden J T. Finite Element of Nonlinear Continue [M]. New York: McGraw-Hill, 1972.
  • 7Bercover M, Hashani Y, Bathe K J. On a Finite Element Procedure for Nonlinear Incompressible Elasticity [M]. New York: ch26 John Wiley, 1981.
  • 8Rivlin R S. Large elastic of isotropic materials(III) [J]. Phil. Trans., 1948,A240:565-584.
  • 9史守峡,白若阳.非线性不可压缩橡胶柱体的大变形罚有限元分析[J].世界地震工程,1998,14(1):51-57. 被引量:7

共引文献265

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部