期刊文献+

Schur数推广及“Schur-Pythagoras数”研究

Generalization of Schur Number and Study of "Schur-Pythagoras Number"
下载PDF
导出
摘要 结合Schur数和勾股数组的特征,推广定义了一类新的临界数,称之为"Schur-Pythagoras数",记作spn.它是最大的自然数,使得自然数集合{1,2,,n}T sp能被划分成n个子集合,在任意子集S T中,方程2 2 2x y z无解.给出了sp 2 1104及sp2是有限数值还是无穷数值的未解问题的结果. Based on the character of Schur number and Pythagoras array, a new kind of critical value, called "Schur-Pythagoras number", recorded as sp,, , is generally defined. It is the maximum natural number and makes natural number set T = {1,2,...,spn} be partitioned into n subsets. The equation x2 +y2= z2 has no solution in any subset S c T. The result of an unsolved problem is given, that whether sp2 ≥1 104 and sp2 is finite or infinite.
出处 《新乡学院学报》 2011年第6期481-484,共4页 Journal of Xinxiang University
基金 上海市自然科学基金项目(10ZR1412500 11ZR1425100) 上海市教委科研创新项目(11yz241)
关键词 Schur数 勾股数组 Schur-Pythagoras Schur number, Pythagoras array, Schur-Pythagoras
  • 相关文献

参考文献4

  • 1RAMSEY F P. On a Problem of Formal Logic[J]. Proceedings of the London Mathematical Society, 1930, 48: 264-286.
  • 2SCHUR I. fiber die kongruenz x^-n1 + y^m = z^m(mod p) [J]. Jahresber Deutsch Math Verein, 1916, 25:114-117.
  • 3ABBOTT H, HANSON D. A Problem of Schur and Its Generalizations[J]. Acta Arithmetic, 1972, 20:175-187.
  • 4EXCOO G, A Lower Bound for Schur Numbers And Multicolor Ramsey Numbers[EB/OL]. (1994-09-20)[2011-10-10] http://www.combinatorics.org/Volume_1/volume 1 .html#RS.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部