摘要
结合Schur数和勾股数组的特征,推广定义了一类新的临界数,称之为"Schur-Pythagoras数",记作spn.它是最大的自然数,使得自然数集合{1,2,,n}T sp能被划分成n个子集合,在任意子集S T中,方程2 2 2x y z无解.给出了sp 2 1104及sp2是有限数值还是无穷数值的未解问题的结果.
Based on the character of Schur number and Pythagoras array, a new kind of critical value, called "Schur-Pythagoras number", recorded as sp,, , is generally defined. It is the maximum natural number and makes natural number set T = {1,2,...,spn} be partitioned into n subsets. The equation x2 +y2= z2 has no solution in any subset S c T. The result of an unsolved problem is given, that whether sp2 ≥1 104 and sp2 is finite or infinite.
出处
《新乡学院学报》
2011年第6期481-484,共4页
Journal of Xinxiang University
基金
上海市自然科学基金项目(10ZR1412500
11ZR1425100)
上海市教委科研创新项目(11yz241)