期刊文献+

基于蚁群–混合蛙跳算法的贴片机贴装顺序优化 被引量:9

Mounting sequence optimization on surface mounting machine using ant-colony algorithm and shuffled frog-leaping algorithm
下载PDF
导出
摘要 针对喂料器的位置确定的条件下,研究拱架式贴片机的元器件贴装顺序优化问题.建立了新的拱架式贴片机贴装顺序的数学模型.针对问题的路径寻优特点,把混合蛙跳算法与蚁群算法相融合,实现对贴片机的元件贴装顺序优化问题的求解.在算法中提出了适应于贴片机实际贴装情况的分段启发函数、分段信息素以及信息素的分段更新策略等多种改进方法.为验证算法有效性,以20块实际生产的PCB为实例进行了测试.实验结果表明,算法具有较好的求解精度和全局搜索能力,与文献中的单一混合蛙跳算法相比,平均效率提高了7.89%;与蚁群算法相比,平均效率提高了3.79%. The component mounting sequence optimization of the surface mounting machine is considered under the condition that the feeder allocations are known. A new mathematical model of mounting sequence is specifically built for arch surface mounting machines. Based on the characteristics of searching for the optimal path, a new hybrid algorithm of ant-colony algorithm merged with the shuffled frog-leaping algorithm is proposed to solve the problem. According to the actual mounting situation, a few improved methods are proposed in the algorithm, such as the segmented heuristic function, the segmented pheromone, and the pheromone update strategy. To verify the efficiency of the algorithm, component mounting experiments of 20 printed-circuit-boards(PCBs) are tested. The results show the algorithm has higher accuracy in solving the problem, and in searching the optimal path. It provides an improvement in average efficiency 7.89% over the single shuffled frog-leaping algorithm, and 3.79% over the single ant-colony algorithm.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2011年第12期1813-1820,共8页 Control Theory & Applications
基金 国家自然科学基金资助项目(60835001 60804053 61105081) 教育部重点科研基金资助项目(200805611065) 广东省科技攻关重大资助项目(912220500017)
关键词 贴装顺序优化 蚁群算法 混合蛙跳算法 component mounting sequence optimization; ant-colony algorithm; shuffled frog-leaping algorithm
  • 相关文献

参考文献14

  • 1Rybak LP, Whitworth C, Somani S. Application of antioxidants and other agents to prevent cisplatin ototoxicity. Laryngoscope 1999;109(11):1740-1744.
  • 2Dehane N, Lautermann J, Petrat F, et al. Cisplatin ototoxicity: involvement of iron and enhanced formation of superoxide anion radicals. Toxicol Appl Pharmacol 2001; 174 ( 1 ): 27-34.
  • 3Fukaya H, Kanno H. Experimental studies of the protective effect of ginkgo biloba extract (GBE) on cisplatin induced ototoxicity in rats. Nippon Jibiinkoka Gakkai Kaiho 1999; 102(7):907-917.
  • 4WILLIAM H O, PING J I. A hybrid genetic algorithm for compo- nentsequencing and feeder arrangement[J]. Intelligent Manufactur- ing, 2004, 15(3): 307 - 315.
  • 5LI S Y, HU C E TIAN F H. Enhancing optimal feeder assignment of the multi-head surface mounting[J]. Applied Soft Computing, 2008, 8(1): 522 - 529.
  • 6LIN W Q, ZHU G Y. A genetic optimization approach to optimize the multihead surface mount placement machine[C] //International Conference on Intelligent Robotics and Applications, Lecture Notes in Artificial Intelligence-II. Berlin: Springer, 2008:1003 - 1012.
  • 7WILLIAM H O, PING J I. A genetic algorithm approach to opti- raising component placement andretrieval sequence for chip shooter machines [J]. International Journal of Advanced Manufacturing Tech- nology, 2006, 28(5/6): 556 - 560. ~, ~, ~,J~, ~. ~A~~[J[. ~t~M~ ,~, 2009, 25(3/5): 196 - 198. (ZHANG Kun, JIANG Jianguo, LIU Binfeng, et al. Research of route optimization for surface mount[J]. Microcomputer Information, 2009, 25(3/5): 196 - 198.) CHEN Y M, LIN C T. A particle swarm optimization approach to optimize component placement in printed circuit board assembly[J]. International Journal of Advanced Manufacturing Technology, 2007, 35(5/6): 610 - 620.
  • 8张坤,姜建国,刘斌峰,游芳.贴片机路径优化研究[J].微计算机信息,2009,25(15):196-198. 被引量:3
  • 9CHEN Y M, LIN C T. A particle swarm optimization approach to optimize component placement in printed circuit board assembly[J]. International Journal of Advanced Manufacturing Technology, 2007, 35(5/6): 610 - 620.
  • 10朱光宇.模因内三角概率选择混合蛙跳算法[J].计算机集成制造系统,2009,15(10):1979-1985. 被引量:15

二级参考文献34

共引文献162

同被引文献103

引证文献9

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部