期刊文献+

基于近似模型的两级集成系统协同优化方法 被引量:4

A New BLISCO Method Based on Approximate Models
下载PDF
导出
摘要 在两级集成系统协同优化(BLISCO)方法的基础上提出了一种基于近似模型的BLISCO方法,该方法在继承了BLISCO方法优点的同时,具有能够减少设计优化过程中仿真分析和计算次数、平滑设计空间数值噪声、加快收敛速度等优点。通过两个算例,针对子系统存在耦合和不存在耦合两种情况对所提出方法进行了测试,分析结果表明,采用基于近似模型的BLISCO方法可以快速、准确地获得最优解,且综合性能优于原BLICO方法和相关文献所提出的方法。 BLISCO method is a high efficient multi-level MDO method which combines the advantages of Bi-level integrated system synthesis(BLISS) method and collaborative optimization(CO) method.This paper proposed a new BLISCO method based on approximate models.In addition to inheriting the merits of BLISCO method,it can also reduce the number of simulation analysis and calculation during design optimization processes,smooth the numerical noise in design space,avoid local optimum and quickly find the global optimal solution.The proposed method was tested by two examples,separately from both cases of subsystem existing coupling or not.Through the comparative analysis,it shows that the new BLISCO method based on approximate models can obtain the optimal solution quickly and accurately,and its overall performance is better than that of the original BLISCO method and the methods proposed by the literatures.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2012年第4期395-402,共8页 China Mechanical Engineering
基金 国家高技术研究发展计划(863计划)资助项目(2009AA044601) 高等学校博士学科点专项科研基金资助项目(20100142120095)
关键词 多学科设计优化 多级MDO方法 两级集成系统协同优化(BLISCO) 近似模型 multidisciplinary design optimization multi-level MDO methods bi-level integrated system collaborative optimization(BLISCO) approximate model
  • 相关文献

参考文献12

  • 1Sobiesczanskl--5obieskl J. A Linear Decomposition Method for Optimization Problem- Blueprint for Development [ R ]. Hampton: NASA Technical Memorandum, 1982.
  • 2Xu L, Yan L, Chen X Q, et al. Enhanced Bi--level Integrated System Synthesis 2000 (EBLISS 2000) [C]//50th AIAA/ASME/ASCE/AHS/ASC Struc- tures Structural Dynamics and Materials Confer- ence. New York: American Institute of Aeronautics and Astronautics Inc. , 2009 : 1-15.
  • 3赵敏,崔维成.BLISCO方法在载人潜水器设计中的应用[J].船舶力学,2009,13(2):259-268. 被引量:8
  • 4Barthelemy J F, Sobieszczanski-- Sobieski J. Opti- mum Sensitivity Derivatives of Objective Function in Nonlinear Programming[J]. AIAA Journal, 1983, 21(6): 913-915.
  • 5Sakata S, Ashida F, Zako M. Structural Optimiza- tion Using Kriging Approximation[J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192(7/8):923-939.
  • 6Gusciora P H, Foss A S. A Reduced--order Model of a Fixed--bed Reactor Based on a Novel Applica- tion of the Taylor Dispersion Approximation[C]// American Control Conference. Atlanta, 1988:1058- 1063.
  • 7Padula S L, Alexandrov N M, Green L L. MDOTest Suite at NASA Langley Research Center, AIAA- 1996 - 4028 [R]. New York.. American Institute of Aeronautics and Astronautics, 1996.
  • 8Kodiyalam S. Evaluation of Methods for Multidisci- plinary Design O ptimization ( MDO ), CR- 1998 -208716[R]. Hampton: NASA, 1998.
  • 9Azarm S, Li W C. Multi--level Design Optimiza tion Using Global Monotonicity Analysis[J]. Jour nal of Mechanisms, Transmissions, and Automa tion in Design, 1989, 111(2): 259-263.
  • 10蔡伟,陈小前,姚雯.基于加速收敛BLISS的不确定性多学科设计优化[C]//高金伍,王国俊.第六届中国不确定系统年会论文集.香港:Global-Link Publisher,2008:25-30.

二级参考文献6

共引文献7

同被引文献30

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部